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4. DIMENSION

We have already introduced the concept of dimension of a variety. Now we develop
some methods that allow to compute the dimension of most varieties rigorously. We
show that the dimension of An and Pn is n. The dimension of a variety equals the
dimension of any of its non-empty open subsets. Every irreducible component of
the zero locus of a single function on an affine or projective variety X has dimension
dimX−1.

Two varieties are called birational if they contain isomorphic open subsets. As a
large class of examples of birational varieties we construct the blow-up of an affine
variety in a subvariety or an ideal. We study in detail the case of blowing up a single
point P in a variety X . In this case, the exceptional hypersurface is the tangent cone
CX ,P.

For any point P in a variety X , the tangent space TX ,P is the linear space dual to
M/M2, where M ⊂ OX ,P is the maximal ideal. The point P is called a smooth point
of X if TX ,P =CX ,P, i. e. if X “can be approximated linearly” around P. Smoothness
can easily be checked by the Jacobi criterion.

As an application of the theory developed so far, we show that every smooth cubic
surface X has exactly 27 lines on it. We study the configuration of these lines, and
show that X is isomorphic to P2 blown up in 6 suitably chosen points.

4.1. The dimension of projective varieties. Recall that in section 1.3 we have introduced
the notion of dimension for every (Noetherian) topological space, in particular for every
variety X : the dimension dimX of X is the largest integer n such that there is a chain of
irreducible closed subsets of X

/0 6= X0 ( X1 ( · · ·( Xn = X .

For simplicity of notation, in what follows we will call this a longest chain in X .
While this definition is quite simple to write down, it is very difficult to use in practice.

In fact, we have not even been able yet to compute the dimensions of quite simple varieties
like An or Pn (although it is intuitively clear that these spaces should have dimension n).
In this section, we will develop techniques that allow us to compute the dimensions of
varieties rigorously.

Remark 4.1.1. We will start our dimension computations by considering projective vari-
eties. It should be said clearly that the theory of dimension is in no way special or easier
for projective varieties than it is for other varieties — in fact, it should be intuitively clear
that the dimension of a variety is essentially a local concept that can be computed in the
neighborhood of any point. The reason for us to start with projective varieties is simply
that we know more about them: the main theorem on projective varieties and its corollar-
ies of section 3.4 are so strong that they allow for quite efficient applications in dimension
theory. One could as well start by looking at the dimensions of affine varieties (and most
textbooks will do so), but this requires quite some background in (commutative) algebra
that we do not have yet.

Remark 4.1.2. The main idea for our dimension computations is to compare the dimensions
of varieties that are related by morphisms with various properties. For example, if f :
X → Y is a surjective morphism, we would expect that dimX ≥ dimY . If f : X → Y is a
morphism with finite fibers, i. e. such that f−1(P) is a finite set for all P ∈ Y , we would
expect that dimX ≤ dimY . In particular, if a morphism both is surjective and has finite
fibers, we expect that dimX = dimY .

Example 4.1.3. The standard case in which we will prove and apply the idea of comparing
dimensions is the case of projections from a point. We have already seen such projections
in example 3.3.11 and exercise 3.5.2; let us now consider the general case.
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Let X ( Pn be a projective variety, and let P ∈ Pn be a point that is not in X . By a
change of coordinates we can assume that P = (0 : · · · : 0 : 1). Let H ∼= Pn−1 ⊂ Pn be a
linear subspace of codimension 1 that does not contain P; again by a change of coordinates
we can assume that H = {xn = 0}. We define a projection map π : X → H from P as
follows: for every point Q ∈ X let π(Q) be the intersection point of the line PQ with H.
(Note that this is well-defined as Q 6= P by assumption.)

Q( )π

Q

P

H

PI n

≅ PI n −1

This is in fact a morphism: if Q = (a0 : · · · : an) ∈ X , the line PQ is given parametrically by

PQ = {(λa0 : · · · : λan−1 : λan +µ) ∈ Pn ; (λ : µ) ∈ P1}.
The intersection point of this line with H is obviously the point (a0 : · · · : an−1 : 0), which is
well-defined by the assumption that Q 6= P. Hence the projection π is given in coordinates
by

π : X → Pn−1, (a0 : · · · : an) 7→ (a0 : · · · : an−1).

In particular, this is a polynomial map and therefore a morphism.
Note that projections always have finite fibers: by construction, the inverse image

π−1(Q) of a point Q ∈ H must be contained in the line PQ ∼= P1, but it must also be
an algebraic set and cannot contain the point P, hence it must be a finite set.

Note also that we can repeat this process if the image of X is not all of Pn−1: we can
then project π(X) from a point in Pn−1 to Pn−2, and so on. After a finite number of such
projections, we arrive at a surjective morphism X→ Pm for some m that is the composition
of projections as above. In particular, as this morphism is surjective and has finite fibers,
we expect dimX = m. This is the idea that we will use for our dimension computations.

Let us start with some statements about dimensions that are not only intuitively clear
but actually also easy to prove.

Lemma 4.1.4.
(i) If /0 6= X0 ( · · ·( Xn = X is a longest chain in X then dimXi = i for all i.

(ii) If Y ( X is a closed subvariety of the variety X then dimY < dimX.
(iii) Let f : X→Y be a surjective morphism of projective varieties. Then every longest

chain /0 6= Y0 ( · · · ( Yn in Y can be lifted to a chain /0 6= X0 ( · · · ( Xn in X
(i. e. the Xi are closed and irreducible with f (Xi) = Yi for all i). In particular,
dimX ≥ dimY .

Proof. (i): It is obvious that dimXi ≥ i. If we had dimXi > i there would be a longer chain
in Xi than /0 6= X0 ( · · · ( Xi. This chain could then be extended by the X j for j > i to a
chain in X that is longer than the given one.

(ii): We can extend a longest chain /0 6=Y0 (Y1 ( · · ·(Yn =Y in Y to a chain /0 6=Y0 (
Y1 ( · · ·( Yn = Y ( X in X which is one element longer.

(iii): We prove the statement by induction on n = dimY ; there is nothing to show if n =
0. Otherwise let Z1, . . . ,Zr ⊂X be the irreducible components of f−1(Yn−1), so that f (Z1)∪
·· · ∪ f (Zr) = Yn−1. Note that Yn−1 is irreducible and the f (Zi) are closed by corollary
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3.4.7, so one Zi must map surjectively to Yn−1. Applying the induction hypothesis to the
restriction f |Zi : Zi→ Yn−1 we get dimZi ≥ dimYn−1 = n−1, so there is a chain /0 6= X0 (
· · ·( Xn−1 = Zi. Extending this chain by X at the end, we thus obtain a chain in X of length
n lying over the given chain in Y . �

Lemma 4.1.5. Let X ( Pn be a projective variety, and assume without loss of generality
that P = (0 : · · · : 0 : 1) /∈ X.

(i) Any homogeneous polynomial f ∈ k[x0, . . . ,xn] satisfies a relation of the form

f D +a1 f D−1 +a2 f D−2 + · · ·+aD = 0 in S(X) = k[x0, . . . ,xn]/I(X)

for some D > 0 and some homogeneous polynomials ai ∈ k[x0, . . . ,xn−1] that do
not depend on the last variable xn.

(ii) Let π : X → Pn−1 be the projection from P as in example 4.1.3. If Y ⊂ X is a
closed subvariety such that π(Y ) = π(X) then Y = X.

Remark 4.1.6. Before we prove this lemma let us give the idea behind these statements.
In (i), you should think of f as being a polynomial containing the variable xn, while the
ai do not. So for given values of x0, . . . ,xn−1 the relation in (i) is a non-zero polynomial
equation in xn that therefore allows only finitely many values for xn on X . As the projection
from P is just given by dropping the last coordinate xn, the statement of (i) is just that this
projection map has finite fibers.

We have argued in remark 4.1.1 that we then expect the dimension of π(X) to be less
than or equal to the dimension of X . To show this we will want to take a longest chain in X
and project it down to π(X). It is obvious that the images of the elements of such a chain in
X are again closed subvarieties in π(X), but it is not a priori obvious that a strict inclusion
Xi ( Xi+1 translates into a strict inclusion π(Xi)( π(Xi+1). This is exactly the statement of
(ii).

Proof. (i): Let d be the degree of f . Consider the morphism

π̃ : X → Pn, (x0 : · · · : xn) 7→ (y0 : · · · : yn) := (xd
0 : · · · : xd

n−1 : f (x0, . . . ,xn))

(which is well-defined since P /∈ X). The image of π̃ is closed by corollary 3.4.7 and is
therefore the zero locus of some homogeneous polynomials F1, . . . ,Fr ∈ k[y0, . . . ,yn]. Note
that

Z(y0, . . . ,yn−1,F1, . . . ,Fr) = /0⊂ Pn

because the Fi require the point to be in the image π̃(X), while the x0, . . . ,xn−1 do not
vanish simultaneously on X . So by the projective Nullstellensatz of proposition 3.2.5 (iv)
it follows that some power of yn is in the ideal generated by y0, . . . ,yn−1,F1, . . . ,Fr. In other
words,

yD
n =

n−1

∑
i=0

gi(y0, . . . ,yn) · yi in S(π̃(X)) = k[y0, . . . ,yn]/(F1, . . . ,Fr)

for some D. Substituting the definition of π̃ for the yi thus shows that there is a relation

f D +a1 f D−1 +a2 f D−2 + · · ·+aD = 0 in S(X)

for some homogeneous ai ∈ k[x0, . . . ,xn−1].
(ii): Assume that the statement is false, i. e. that Y ( X . Then we can pick a homoge-

neous polynomial f ∈ I(Y )\I(X) ⊂ k[x0, . . . ,xn] of some degree d that vanishes on Y but
not on X .

Now pick a relation as in (i) for the smallest possible value of D. In particular we then
have aD 6= 0 in S(X), i. e. aD /∈ I(X). But we have chosen f such that f ∈ I(Y ), therefore
the relation (i) tells us that aD ∈ I(Y ) as well.
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It follows that aD ∈ I(Y )\I(X). But note that aD ∈ k[x0, . . . ,xn−1], so aD is a function on
Pn−1 that vanishes on π(Y ) but not on π(X), in contradiction to the assumption. �

Corollary 4.1.7. Let X (Pn be a projective variety, and assume without loss of generality
that P = (0 : · · · : 0 : 1) /∈ X. Let π : X→ Pn−1 be the projection from P as in example 4.1.3.
Then dimX = dimπ(X).

Proof. Let /0 6= X0 ( · · ·( Xr = X be a longest chain in X . Then /0 6=Y0 ( · · ·(Yr =Y with
Yi = π(Xi) is a chain in π(X): note that the Yi are closed by corollary 3.4.7, irreducible as
they are the images of irreducible sets, and no two of them can coincide by lemma 4.1.5.
It follows that dimπ(X) ≥ dimX . But also dimπ(X) ≤ dimX by lemma 4.1.4 (iii), so the
statement follows. �

Corollary 4.1.8. The dimension of Pn is n.

Proof. By lemma 4.1.4 (ii) we know that

dimP0 < dimP1 < dimP2 < dimP3 < · · · . (∗)
Moreover, we have seen in example 4.1.3 that every projective variety X can be mapped
surjectively to some Pn by a sequence of projections from points; it then follows that
dimX = dimPn by corollary 4.1.7. In other words, every dimension that occurs as the
dimension of some projective variety must occur already as the dimension of some projec-
tive space. But combining (∗) with lemma 4.1.4 (i) we see that every non-negative integer
occurs as the dimension of some projective variety — and therefore as the dimension of
some projective space. So in (∗) we must have dimPn = n for all n. �

Proposition 4.1.9. Let X ⊂ Pn be a projective variety, and let f ∈ k[x0, . . . ,xn] be a non-
constant homogeneous polynomial that does not vanish identically on X. Then dim(X ∩
Z( f )) = dimX−1.

Remark 4.1.10. Note that in the statement of this proposition X ∩ Z( f ) may well be re-
ducible; the statement is then that there is at least one component that has dimension
dimX −1 (and that no component has bigger dimension). We will prove a stronger state-
ment, namely a statement about every component of X ∩Z( f ), in corollary 4.2.5.

Proof. Let m = dimX . After applying a Veronese embedding of degree deg f as in exam-
ple 3.4.11 we can assume that f is linear. Now construct linear functions f0, . . . , fm and
algebraic sets X0, . . . ,Xm+1 ⊂ X inductively as follows: Let X0 = X and f0 = f . For i ≥ 0
let Xi+1 = Xi∩Z( fi), and let fi+1 be any linear form such that

(i) fi+1 does not vanish identically on any component of Xi+1, and
(ii) fi+1 is linearly independent from the f1, . . . , fi.

It is obvious that (i) can always be satisfied. Moreover, (ii) is automatic if Xi+1 is not empty
(as f1, . . . , fi vanish on Xi+1), and easy to satisfy otherwise (as then (i) is no condition).

Applying lemma 4.1.4 (ii) inductively, we see that no component of Xi has dimension
bigger than m− i. In particular, Xm+1 must be empty. Hence the linear forms f0, . . . , fm
do not vanish simultaneously on X ; so they define a morphism π : X → Pm. As the fi are
linear and linearly independent, π is up to a change of coordinates the same as fi = xi for
0 ≤ i ≤ m, so it is just a special case of a continued projection from points as in example
4.1.3. In particular, dimπ(X) = dimX = m by corollary 4.1.7. By lemma 4.1.4 (ii) it then
follows that π(X) = Pm, i. e. π is surjective.

Now suppose that every component of X1 = X ∩ Z( f ) has already dimension at most
m−2, then by the above inductive argument already Xm is empty and the forms f0, . . . , fm−1
do not vanish simultaneously on X . But this means that (0 : · · · : 0 : 1) /∈ π(X), which
contradicts the surjectivity of π. �
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4.2. The dimension of varieties. After having exploited the main theorem on projective
varieties as far as possible, let us now study the dimension of more general varieties. We
have already remarked that the dimension of a variety should be a local concept; in partic-
ular the dimension of any open subvariety U of a variety X should be the same as that of
X . This is what we want to prove first.

Proposition 4.2.1. Let X be a variety, and let U ⊂ X be a non-empty open subset of X.
Then dimU = dimX.

Proof. “≤”: Let /0 6= U0 (U1 ( · · · (Un = U be a longest chain in U . If Xi denotes the
closure of Ui in X for all i, then /0 6= X0 ( · · ·( Xn = X is a chain in X .

“≥”: We will prove this in several steps.
Step 1: Let /0 6= X0 ( · · · ( Xn = X be a longest chain in X , and assume that X0 ⊂U .

Then set Ui = Xi∩U for all i; we claim that /0 6=U0 ( · · ·(Un =U is a chain in U (from
which it then follows that dimU ≥ dimX). In fact, the only statement that is not obvious
here is that Ui 6=Ui+1 for all i. So assume that Ui =Ui+1 for some i. Then

Xi+1 = (Xi+1∩U)∪ (Xi+1∩ (X\U))

= (Xi∩U)∪ (Xi+1∩ (X\U))

= Xi∪ (Xi+1∩ (X\U)),

where the last equality follows from Xi∩(X\U)⊂Xi+1∩(X\U). But this is a contradiction
to Xi+1 being irreducible, as Xi is neither empty nor all of Xi+1. So we have now proven
the proposition in the case where the element X0 of a longest chain in X lies in U .

Step 2: Let X be a projective variety. Then we claim that we can always find a longest
chain /0 6= X0 ( · · · ( Xn (with n = dimX) such that X0 ⊂U . We will construct this chain
by descending recursion on n, starting by setting Xn = X . So assume that Xi ( Xi+1 (
· · · ( Xn = X has already been constructed such that Xi ∩U 6= /0. Pick any non-constant
homogeneous polynomial f that does not vanish identically on any irreducible component
of Xi\U . By proposition 4.1.9 there is a component of Xi ∩Z( f ) of dimension i− 1; call
this Xi−1. We have to show that Xi−1 ∩U 6= /0. Assume the contrary; then Xi−1 must be
contained in Xi\U . But by the choice of f we know that Xi−1 is not a whole component
of Xi\U , so it can only be a proper subset of a component of Xi\U . But by lemma 4.1.4
(ii) the components of Xi\U have dimension at most i−1, and therefore proper subsets of
them have dimension at most i−2. This is a contradiction to dimXi−1 = i−1.

Combining steps 1 and 2, we have now proven the proposition if X is a projective va-
riety. Of course the statement then also follows if X is an affine variety: let X̄ be the
projective closure of X as in exercise 3.5.3, then by applying our result twice we get
dimU = dim X̄ = dimX .

Step 3: Let X be any variety, and let /0 6= X0 ( · · · ( Xn = X be a longest chain in X .
Let V ⊂ X be an affine open neighborhood of the point X0; then dimV = dimX by step 1.
In the same way we can find an affine open subset W of U such that dimW = dimU . As
V ∩W 6= /0, it finally follows from steps 1 and 2 that

dimX = dimV = dim(V ∩W ) = dimW = dimU.

�

In particular, as every variety can be covered by affine varieties, this proposition implies
that it is sufficient to study the dimensions of affine varieties. Let us first prove the affine
equivalent of proposition 4.1.9.

Example 4.2.2.

(i) As An is an open subset of Pn, it follows by corollary 4.1.8 that dimAn = n.
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(ii) AsAm+n is an open subset of Pn×Pm, it follows by (i) that dim(Pn×Pm)= n+m.
(iii) Let f ∈ k[x1, . . . ,xn] be a non-constant polynomial. We claim that Z( f )⊂ An has

dimension n−1. In fact, let X̄ ⊂ Pn be the projective closure of Z( f ); by propo-
sition 4.1.9 there is a component Y of X̄ of dimension n−1. As the homogenized
polynomial f does not contain x0 as a factor, X̄ cannot contain the whole “infinity
locus” Pn\An ∼= Pn−1. So the part of X̄ in the infinity locus has dimension at most
n−2; in particular the component Y of X̄ has non-empty intersection with An. In
other words, Z( f )⊂ An has dimension n−1.

(iv) Let f ∈ k[x1, . . . ,xn] be as in (iii); we claim that in fact the dimension of every
irreducible component of Z( f ) ⊂ An is n−1: in fact, as k[x1, . . . ,xn] is a unique
factorization domain, we can write f as a product f1 · · · fr of irreducible poly-
nomials, so that the decomposition of Z( f ) into its irreducible components is
Z( f1)∪ ·· ·∪Z( fr). Now we can apply (iii) to the fi separately to get the desired
result.

(v) The corresponding statements to (iii) and (iv) are true for the zero locus of a
homogeneous polynomial in Pn as well (the proof is the same).

By (iv) and (v), there is a one-to-one correspondence between closed subvarieties of An

(resp. Pn) of dimension n− 1 and non-constant irreducible polynomials in k[x1, . . . ,xn]
(resp. non-constant homogeneous polynomials in k[x0, . . . ,xn]). Varieties that are of this
form are called hypersurfaces; if the degree of the polynomial is 1 they are called hyper-
planes.

Remark 4.2.3. Next we want to prove for general affine varieties X ⊂An that the dimension
of (every component of) X ∩Z( f ) is dimX−1. Note that this does not follow immediately
from the projective case as it did for X = An in example 4.2.2 (iii) or (iv):

(i) As for example 4.2.2 (iii), of course we can still consider the projective closure
X̄ of X in Pn and intersect it with the zero locus of the homogenization of f ;
but proposition 4.1.9 only gives us the existence of one component of dimension
dimX − 1 in X̄ ∩ Z( f ). It may well be that there is a component of X̄ ∩ Z( f )
that is contained in the “hyperplane at infinity” Pn\An, in which case we get
no information about the affine zero locus X ∩ Z( f ). As an example you may
consider the projective variety X = {x0x2 = x2

1}⊂P2 and f = x1: then X∩Z( f ) =
(1 : 0 : 0)∪ (0 : 0 : 1) contains a point (0 : 0 : 1) at infinity as an irreducible
component.

(ii) As for example 4.2.2 (iv), note that a factorization of f as for An is simply not
possible in general. For example, in the case just considered in (i), Z( f ) intersects
X in two points, but there is no decomposition of the linear function f into two
factors that vanish on only one of the points.

Nevertheless the idea of the proof is still to use projections from points:

Proposition 4.2.4. Let X ⊂ An be an affine variety, and let f ∈ k[x1, . . . ,xn] be a non-
constant polynomial that does not vanish identically on X. Then dim(X ∩Z( f )) = dimX−
1 (unless X ∩Z( f ) = /0).

Proof. We prove the statement by induction on n (not on dimX!); there is nothing to show
for n = 0. If X = An the statement follows from example 4.2.2 (iv), so we can assume that
X (An.

Let X̄ be the projective closure in Pn; we can assume by an affine change of coordi-
nates that P = (0 : · · · : 0 : 1) /∈ X̄ . Consider the projection π̄ : X̄ → Pn−1 from P as in
example 4.1.3. Obviously, we can restrict this projection map to the affine space An ⊂ Pn

given by x0 6= 0; we thus obtain a morphism π : X → π(X) that is given in coordinates by
(a1, . . . ,an) 7→ (a1, . . . ,an−1). Note that π(X) is closed in An, as π(X) = π̄(X̄)∩An.
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By lemma 4.1.5 (i) applied to the function xn we see that there is a relation

p(xn) := xD
n +a1xD−1

n + · · ·aD = 0 in A(X) (∗)

for some D > 0 and some ai ∈ k[x1, . . . ,xn−1] that do not depend on xn. Let K be the field
k(x1, . . . ,xn−1) of rational functions in n−1 variables. Set V = K[xn]/p(xn); by (∗) this is
a D-dimensional vector space over K (with basis 1,xn, . . . ,xD−1

n ). Obviously, every poly-
nomial g ∈ k[x1, . . . ,xn] defines a vector space homomorphism g : V → V (by polynomial
multiplication), so we can talk about its determinant detg ∈ K. Moreover, it is easy to see
that detg∈ k[x1, . . . ,xn−1], as the definition of the determinant does not use divisions. Note
also that detg = gD if g ∈ k[x1, . . . ,xn−1].

Now go back to our original problem: describing the zero locus of the given polynomial
f on X . We claim that

π(X ∩Z( f )) = π(X)∩Z(( f )∩ k[x1, . . . ,xn−1])⊃ π(X)∩Z(det f )

(in fact there is equality, but we do not need this). The first equality is obvious from the
definition of π. To prove the second inclusion, note that by the Nullstellensatz it suffices
to show that ( f )∩ k[x1, . . . ,xn−1]⊂

√
(det f ). So let g ∈ ( f )∩ k[x1, . . . ,xn−1]; in particular

g = f ·b for some b ∈ k[x1, . . . ,xn]. It follows that

gD = detg = det f ·detb ∈ (det f ),

i. e. g ∈
√
(det f ), as we have claimed.

The rest is now easy:

dim(X ∩Z( f )) = dimπ(X ∩Z( f )) by corollary 4.1.7 and proposition 4.2.1

≥ dim(π(X)∩Z(det f )) by the inclusion just proven

= dimπ(X)−1 by the induction hypothesis
= dimX−1 by corollary 4.1.7 and proposition 4.2.1 again.

The opposite inequality follows trivially from lemma 4.1.4 (ii). �

It is now quite easy to extend this result to a statement about every component of X ∩
Z( f ):

Corollary 4.2.5. Let X ⊂An be an affine variety, and let f ∈ k[x1, . . . ,xn] be a non-constant
polynomial that does not vanish identically on X. Then every irreducible component of
X ∩Z( f ) has dimension dimX−1.

Proof. Let X ∩Z( f ) = Z1∪·· ·∪Zr be the decomposition into irreducible components; we
want to show that dimZ1 = dimX −1. Let g ∈ k[x1, . . . ,xn] be a polynomial that vanishes
on Z2, . . . ,Zr but not on Z1, and let U = Xg = X\Z(g). Then U is an affine variety by
lemma 2.3.16, and U ∩ Z( f ) has only one component Z1 ∩U . So the statement follows
from proposition 4.2.4 together with proposition 4.2.1. �

Remark 4.2.6. Proposition 4.2.1 and especially corollary 4.2.5 are the main properties of
the dimension of varieties. Together they allow to compute the dimension of almost any
variety without the need to go back to the cumbersome definition. Here are two examples:

Corollary 4.2.7. Let f : X→Y be a morphism of varieties, and assume that the dimension
of all fibers n = dim f−1(P) is the same for all P ∈ Y . Then dimX = dimY +n.

Proof. We prove the statement by induction on dimY ; there is nothing to show for n = 0
(i. e. if Y is a point).
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By proposition 4.2.1 we can assume that Y ⊂Am is an affine variety. Let f ∈ k[x1, . . . ,xm]
be any non-zero polynomial in the coordinates of Am that vanishes somewhere, but not ev-
erywhere on Y , let Y ′ ⊂ Y be an irreducible component of Y ∩Z( f ), and let X ′ = f−1(Y ′).
Then it follows by corollary 4.2.5 and the induction hypothesis that

dimX = dimX ′+1 = dimY ′+n+1 = dimY +n.

�

Example 4.2.8.

(i) For any varieties X , Y we have dim(X ×Y ) = dimX + dimY (apply corollary
4.2.7 to the projection morphism X×Y → X).

(ii) Combining corollary 4.2.7 with proposition 4.2.1 again, we see that it is actually
sufficient that f−1(P) is non-empty and of the same dimension for all P in a
non-empty open subset U of Y .

Corollary 4.2.9. Let X and Y be affine varieties in An. Then every irreducible component
of X ∩Y ⊂ An has dimension at least dimX +dimY −n.

Proof. Rewrite X ∩Y as the intersection of X ×Y with the diagonal ∆(An) in An×An.
The diagonal is given by the zero locus of the n functions xi− yi for 1 ≤ i ≤ n, where
x1, . . . ,xn,y1, . . . ,yn are the coordinates of An×An. By corollary 4.2.5, every component
of the intersection of an affine variety Z with the zero locus of a non-constant function
has dimension at least equal to dimZ− 1 (it is dimZ if f vanishes identically on Z, and
dimZ−1 otherwise). Applying this statement n times to the functions xi− yi on X ×Y in
An×An we conclude that every component of X ∩Y has dimension at least dim(X×Y )−
n = dimX +dimY −n. �

Remark 4.2.10. (For commutative algebra experts) There is another more algebraic way
of defining the dimension of varieties that is found in many textbooks: the dimension of
a variety X is the transcendence degree over k of the field of rational functions K(X) on
X . Morally speaking, this definition captures the idea that the dimension of a variety is the
number of independent coordinates on X . We have not used this definition here as most
propositions concerning dimensions would then have required methods of (commutative)
algebra that we have not developed yet.

Here are some ideas that can be used to show that this algebraic definition of dimension
is equivalent to our geometric one:

• If U ⊂X is a non-empty open subset we have K(U) =K(X), so with the algebraic
definition of dimension it is actually trivial that dimU = dimX .
• It is then also obvious that dimAn = tr degk(x1, . . . ,xn) = n.
• Let π : X → π(X) be a projection map as in the proof of proposition 4.2.4. The

relation (∗) in the proof can be translated into the fact that K(X) is an algebraic
field extension of K(π(X)) (we add one variable xn, but this variable satisfies a
polynomial relation). In particular, these two fields have the same transcendence
degree, translating into the fact that dimπ(X) = dimX .

4.3. Blowing up. We have just seen in 4.2.1 that two varieties have the same dimension if
they contain an isomorphic (non-empty) open subset. In this section we want to study this
relation in greater detail and construct a large and important class of examples of varieties
that are not isomorphic but contain an isomorphic open subset. Let us first make some
definitions concerning varieties containing isomorphic open subsets. We will probably not
use them very much, but they are often found in the literature.

Definition 4.3.1. Let X and Y be varieties. A rational map f from X to Y , written f :
X 99K Y , is a morphism f : U → Y (denoted by the same letter) from a non-empty open
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subset U ⊂ X to Y . We say that two such rational maps f : U → Y and g : V → Y with
U,V ⊂ X are the same if f = g on U ∩V .

A rational map f : X 99K Y is called dominant if its image is dense in Y , i. e. if f is
given by a morphism f : U → Y such that f (U) contains a non-empty open subset of Y . If
f : X 99K Y and g : Y 99K Z are rational maps, and if f is dominant, then the composition
g◦ f : X 99K Z is a well-defined rational map.

A birational map from X to Y is a rational map with an inverse, i. e. it is a (dominant)
rational map f : X 99K Y such that there is a (dominant) rational map g : Y 99K X with
g◦ f = idX and f ◦g = idY as rational maps. Two varieties X and Y are called birational
if there is a birational map between them. In other words, X and Y are birational if they
contain an isomorphic non-empty open subset.

We will now construct the most important examples of birational morphisms (resp.
birational varieties), namely blow-ups.

Construction 4.3.2. Let X ⊂ An be an affine variety, and let f0, . . . , fr ∈ k[x1, . . . ,xn] be
polynomial functions that do not vanish identically on X . Then U = X\Z( f0, . . . , fr) is a
non-empty open subset of X , and there is a well-defined morphism

f : U → Pr,P 7→ ( f0(P) : · · · : fr(P)).

Now consider the graph

Γ = {(P, f (P)) ; P ∈U} ⊂ X×Pr

which is isomorphic to U (with inverse morphism (P,Q) 7→ P). Note that Γ is in general
not closed in X×Pr, because the points in X\U where ( f0 : · · · : fr) is ill-defined as a point
in Pr are “missing”.

The closure of Γ in X×Pr is called the blow-up of X in ( f0, . . . , fr); we denote it by X̃ .
It is a closed subset of X ×Pr, and it is irreducible as Γ is; so it is a closed subvariety of
X×Pr. In particular, there are projection morphisms π : X̃ → X and p : X̃ → Pr. Note that
X and X̃ both contain U as a dense open subset, so X and the blow-up X̃ have the same
dimension.

Let us now investigate the geometric meaning of blow-ups.

Example 4.3.3. If r = 0 in the above notation, i. e. if there is only one function f0, the
blow-up X̃ is isomorphic to X . In fact, we then have X̃ ⊂ X ×P0 ∼= X , so X̃ is the smallest
closed subvariety containing U .

Example 4.3.4. Let X = A2 with coordinates x0,x1, and let f0 = x0, f1 = x1. Then the
blow-up of X in ( f0, f1) is a subvariety of A2×P1. The morphism (x0,x1) 7→ (x0 : x1) is
well-defined on U = X\{(0,0)}; so on this open subset the graph is given by

Γ = {((x0,x1),(y0 : y1)) ; x0y1 = x1y0} ⊂U×P1.

The closure of Γ is now obviously given by the same equation, considered in A2×P1:

X̃ = {((x0,x1),(y0 : y1)) ; x0y1 = x1y0} ⊂ A2×P1.

The projection morphisms to X = A2 and P1 are obvious.
Note that the inverse image of a point P= (x0,x1)∈ X\{(0,0)} under π is just the single

point ((x0,x1),(x0 : x1)) — we knew this before. The inverse image of (0,0) ∈ X however
is P1, as the equation x0y1 = x1y0 imposes no conditions on y0 and y1 if (x0,x1) = (0,0).

To give a geometric interpretation of the points in π−1(0,0) let us first introduce one
more piece of notation. Let Y ⊂ X be a closed subvariety that has non-empty intersection
with U . As U is also a subset of X̃ , we can consider the closure of Y ∩U in X̃ . We call
this the strict transform of Y . Note that by definition the strict transform of Y is just the
blow-up of Y at ( f0, . . . , fr); so we denote it by Ỹ .
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Now let C ⊂ X = A2 be a curve, given by the equation

g(x0,x1) = ∑
i, j

ai, jxi
0x j

1 = a0,0 +a1,0x0 +a0,1x1 +a1,1x0x1 + · · · .

Assume that a0,0 = 0, i. e. that C passes through the origin in A2, and that (a1,0,a0,1) 6=
(0,0), so that C has a well-defined tangent line at the origin, given by the linearization
a1,0x0 + a0,1x1 = 0 of g. Let us compute the strict transform C̃. Of course, the points
((x0,x1),(y0 : y1)) of C̃ satisfy the equation

a1,0x0 +a0,1x1 +a1,1x0x1 +a2,0x2
0 +a0,2x2

1 + · · ·= 0. (∗)
But it is not true that C̃ is just the common zero locus in A2×P1 of this equation together
with x0y1 = x1y0, because this common zero locus contains the whole fiber π−1(0,0)∼= P1

— but C̃ has to be irreducible of dimension 1, so it cannot contain this P1. In fact, we have
forgotten another relation: on the open set where x0 6= 0 and x1 6= 0 we can multiply (∗)
with y0

x0
; using the relation y0

x0
= y1

x1
we get

a1,0y0 +a0,1y1 +a1,1y0x1 +a2,0x0y0 +a0,2x1y1 + · · ·= 0.

This equation must then necessarily hold on the closure C̃ too. Restricting it to the origin
(x0,x1) = (0,0) we get a1,0y0 +a0,1y1 = 0, which is precisely the equation of the tangent
line to C at (0,0). In other words, the strict transform C̃ of C intersects the fiber π−1(0,0)
precisely in the point of P1 corresponding to the tangent line of C in (0,0). In this sense
we can say that the points of π−1(0,0) correspond to tangent directions in X at (0,0).

The following picture illustrates this: we have two curves C1, C2 that intersect at the
origin with different tangent directions. The strict transforms C̃1 and C̃2 are then disjoint
on the blow-up X̃ .

π−1(0,0)

X
~

C
~
1

C
~
2

C1

C2

π

X

Let us now generalize the results of this example to general blow-ups. Note that in the
example we would intuitively say that we have “blown up the origin”, i. e. the zero locus
of the functions f0, . . . , fr. In fact, the blow-up construction depends only on the ideal
generated by the fi:

Lemma 4.3.5. The blow-up of an affine variety X at ( f0, . . . , fr) depends only on the ideal
I ⊂ A(X) generated by f0, . . . , fr. We will therefore usually call it the blow-up of X at the
ideal I. If I = I(Y ) for a closed subset Y ⊂ X, we will also call it the blow-up of X in Y .

Proof. Let ( f0, . . . , fr) and ( f ′0, . . . , f ′s) be two sets of generators of the same ideal I⊂A(X),
and let X̃ and X̃ ′ be the blow-ups of X at these sets of generators. By assumption we have
relations in A(X)

fi = ∑
j

gi, j f ′j and f ′j = ∑
k

g′j,k fk.

We want to define a morphism X̃ → X̃ ′ by sending (P,(y0 : · · · : yr)) to (P,(y′0 : · · · : y′s)),
where y′j = ∑k g′j,k(P)yk. First of all we show that this defines a morphism to X ×Ps, i. e.
that the y′j cannot be simultaneously zero. To do this, note that by construction we have the
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relation (y0 : · · · : yr) = ( f0 : · · · : fr) on X\Z(I) ⊂ X̃ ⊂ X ×Pr, i. e. these two vectors are
linearly dependent (and non-zero) at each point in this set. Hence the linear relations fi =

∑ j,k gi, jg′j,k fk in f0, . . . , fr imply the corresponding relations yi = ∑ j,k gi, jg′j,kyk in y0, . . . ,yr

on this set, and thus also on its closure, which is by definition X̃ . So if we had y′j =
∑k g′j,kyk = 0 for all j then we would also have yi = ∑ j gi, jy′j = 0 for all i, which is a
contradiction.

Hence we have defined a morphism X̃ → X ×Ps. By construction it maps the open
subset X\Z( f0, . . . , fr) ⊂ X̃ to X\Z( f ′0, . . . , f ′s) ⊂ X̃ ′, so it must map its closure X̃ to X̃ ′

as well. By the same arguments we get an inverse morphism X̃ ′ → X̃ , so X̃ and X̃ ′ are
isomorphic. �

Let us now study the variety X̃ itself, in particular over the locus Z( f0, . . . , fr) where
π : X̃ → X is not an isomorphism.

Lemma 4.3.6. Let X ⊂ An be an affine variety, and let X̃ be the blow-up of X at the ideal
I = ( f0, . . . , fr). Then:

(i) The blow-up X̃ is contained in the set

{(P,(y0 : · · · : yr)) ; yi f j(P) = y j fi(P) for all i, j = 0, . . . ,r} ⊂ X×Pr.

(ii) The inverse image π−1(Z( f0, . . . , fr)) is of pure dimension dimX −1. It is called
the exceptional hypersurface.

Proof. (i): By definition we must have (y0 : · · · : yr) = ( f0(P) : · · · : fr(P)) on the non-
empty open subset X\Z(I)⊂ X̃ . So these equations must be true as well on the closure of
this open subset, which is X̃ by definition.

(ii): It is enough to prove the statement on the open subset where yi 6= 0, as these open
subsets for all i cover X̃ . Note that on this open subset the condition fi(P) = 0 implies
f j(P) = 0 for all j by the equations of (i). So the inverse image π−1(Z( f0, . . . , fr)) is
given by one equation f j = 0, and is therefore of pure dimension dim X̃ − 1 = dimX − 1
by corollary 4.2.5. �

Example 4.3.7. In example 4.3.4, X =A2 has dimension 2, and the exceptional hypersur-
face was isomorphic to P1, which has dimension 1.

Remark 4.3.8. The equations in lemma 4.3.6 (i) are in general not the only ones for X̃ .
Note that they do not impose any conditions over the zero locus Z( f0, . . . , fr) at all, so that
it would seem from these equations that the exceptional hypersurface is always Pr. This
must of course be false in general just for dimensional reasons (see lemma 4.3.6 (ii)).

In fact, we can write down explicitly the equations for the exceptional hypersurface. We
will do this here only in the case of the blow-up of (the ideal of) a point P, which is the
most important case. By change of coordinates, we can then assume that P is the origin in
An.

For any f ∈ k[x1, . . . ,xn] we let f in be the “initial polynomial” of f , i. e. if f = ∑i f (i) is
the splitting of f such that f (i) is homogeneous of degree i, then f in is by definition equal
to the smallest non-zero f (i). If I ⊂ k[x1, . . . ,xn], we let Iin be the ideal generated by the
initial polynomials f in for all f ∈ I. Note that Iin is by definition a homogeneous ideal. So
its affine zero locus Za(Iin)⊂ An is a cone, and there is also a well-defined projective zero
locus Zp(Iin). By exercise 4.6.8, the exceptional hypersurface of the blowup of an affine
variety X ⊂ An in the origin is precisely Zp(I(X)in). (The proof of this statement is very
similar to the computation of C̃ in example 4.3.4.)

Let us figure out how this can be interpreted geometrically. By construction, I(X)in is
obtained from I(X) by only keeping the terms of lowest degree, so it can be interpreted as
an “approximation” of I(X) around zero, just in the same way as the Taylor polynomial
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approximates a function around a given point. Note also that Za(I(X)in) has the same
dimension as X by lemma 4.3.6 (ii). Hence we can regard Za(I(X)in) ⊂ An as the cone
that approximates X best around the point P. It is called the tangent cone of X in P and
denoted CX ,P. The exceptional locus of the blow-up X̃ of X in P is then the “projectivized
tangent cone”, i. e. it corresponds to “tangent directions” in X through P, just as in example
4.3.4.

Example 4.3.9. Here are some examples of tangent cones.

(i) Let X = {(x,y) ; y = x(x− 1)} ⊂ A2. The tangent cone of X in P = (0,0) is
given by keeping only the linear terms of the equation y = x(x− 1), i. e. CX ,P =
{(x,y) ; y = −x} is the tangent line to X in P. Consequently, the exceptional
hypersurface of the blow-up of X in P contains only one point. In fact, X̃ is
isomorphic to X in this case: note that on X , the ideal of P is just given by the
single function x, as (y− x(x− 1),x) = (x,y). So we are blowing up at f0 = x
only. It follows then by example 4.3.3 that X̃ = X .

(ii) Let X = {(x,y) ; y2 = x2 + x3} ⊂ A2. This time there are no linear terms in
the equation of X , so the tangent cone in P = (0,0) is given by the quadratic
terms CX ,P = {(x,y) ; y2 = x2}, i. e. it is the union of the two tangent lines y = x
and y = −x to X in P (see the picture below). The exceptional hypersurface
of the blow-up of X in P therefore contains exactly two points, one for every
tangent direction in P. In other words, the two local branches of X around P get
separated in the blow-up. Note that we cannot apply the argument of (i) here that
X̃ should be isomorphic to X : the ideal of P cannot be generated on X by one
function only. While it is true that the zero locus of (x,y2−x2−x3) is P, the ideal
(x,y2− x2− x3) = (x,y2) is not equal to I(P) = (x,y) — and this is the important
point. In particular, we see that the blow-up of X in an ideal I really does depend
on the ideal I and not just on its zero locus, i. e. on the radical of I.

(iii) Let X = {(x,y) ; y2 = x3} ⊂ A2. This time the tangent cone is CX ,P = {y2 = 0},
i. e. it is only one line. So for X̃ the point P ∈ X is replaced by only one single
point again, as in (i). But in this case X and X̃ are not isomorphic, as we will see
in 4.4.7.

CX,P

CX,P CX,P
x

y

X

P

(i)

x

y

(ii)

x

y

P

(iii)

PX

X

Remark 4.3.10. Let X be any variety, and let Y ⊂ X be a closed subset. For an affine open
cover {Ui} of X , let Ũi be the blow-up of Ui in Ui∩Y . It is then easy to see that the Ũi can
be glued together to give a blow-up variety X̃ .

In what follows, we will only need this in the case of the blow-up of a point, where the
construction is even easier as it is local around the blown-up point: let X be a variety, and
let P ∈ X be a point. Choose an affine open neighborhood U ⊂ X of P, and let Ũ be the
blow-up of U in P. Then we obtain X̃ by glueing X\P to Ũ along the common open subset
U\P. In particular, this defines the tangent cone CX ,P to X at P for any variety X : it is the
affine cone over the exceptional hypersurface of the blow-up of X in P.

This sort of glueing currently works only for blow-ups at subvarieties, i. e. for blow-ups
at radical ideals. For the general construction we would need to patch ideals, which we do
not know how to do at the moment.
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Note however that it is easy to see that for projective varieties, the blow-up at a homo-
geneous ideal can be defined in essentially the same way as for affine varieties: let X ⊂ Pn

be a projective variety, and let Y ⊂ X be a closed subset. If f0, . . . , fr are homogeneous
generators of I(Y ) of the same degree, the blow-up of X in Y is precisely the closure of

Γ = {(P,( f0(P) : · · · : fr(P)) ; P ∈U} ⊂ X×Pr

in X×Pr (this is easily checked on the affine patches fi 6= 0).

Example 4.3.11. The following property of blow-ups follows trivially from the definitions,
yet it is one of their most important properties.

Let X ⊂ An be an affine variety, and let f0, . . . , fr be polynomials that do not vanish
identically on X . Note that the morphism f : P 7→ ( f0(P) : · · · : fr(P)) to Pr is only well-
defined on the open subset U =X\Z( f0, . . . , fr) of X . In general, we can not expect that this
morphism can be extended to a morphism on all of X . But we can always extend it “after
blowing up the ideal ( f0, . . . , fr) of the indeterminacy locus”, i. e. there is an extension f̃ :
X̃→ Pr (that agrees with f on the open subset U), namely just the projection from X̃ ⊂ X×
Pr→ Pr. So blowing up is a way to extend morphisms to bigger sets on which they would
otherwise be ill-defined. The same is true for projective varieties and the construction at
the end of remark 4.3.10. Let us consider a concrete example of this idea in the next lemma
and the following remark:

Lemma 4.3.12. P1×P1 blown up in one point is isomorphic to P2 blown up in two points.

Proof. We know from example 3.3.14 that P1×P1 is isomorphic to the quadric surface

Q = {(x0 : x1 : x2 : x3) ; x0x3 = x1x2} ⊂ P3.

Let P = (0 : 0 : 0 : 1) ∈ Q, and let Q̃ ⊂ P3×P2 be the blow-up of Q in the ideal I(P) =
(x0,x1,x2).

On the other hand, let R1 = (0 : 1 : 0),R2 = (0 : 0 : 1) ∈ P2, and let P̃2 ⊂ P2×P3 be
the blow-up of P2 in the ideal I = (y2

0,y0y1,y0y2,y1y2). Note that this is not quite the ideal
I(R1∪R2) = (y0,y1y2), but this does not matter: the blow-up is a local construction, so let
us check that we are doing the right thing around R1. There is an open affine neighborhood
around R1 given by y1 6= 0, and on this neighborhood the ideal I is just (y2

0,y0,y0y2,y2) =

(y0,y2), which is precisely the ideal of R1. The same is true for R2, so the blow-up of P2

in I is actually the blow-up of P2 in the two points R1 and R2.
Now we claim that an isomorphism is given by

f : Q̃ 7→ P̃2, ((x0 : x1 : x2 : x3),(y0 : y1 : y2)) 7→ ((y0 : y1 : y2),(x0 : x1 : x2 : x3)).

In fact, this is easy to check: obviously, f is an isomorphism P2×P3 → P3×P2, so we
only have to check that f maps Q̃ to P̃2, and that f−1 maps P̃2 to Q̃. Note that it suffices
to check this away from the blown-up points: f−1(P̃2) is a closed subset of P3×P2, so if
it contains a non-empty open subset U ⊂ Q (e. g. Q̃ minus the exceptional hypersurface),
it must contain all of Q.

But this is now easy to check: on Q̃ we have x0x3 = x1x2 and (y0 : y1 : y2) = (x0 : x1 : x2)
(where this is well-defined), so in the image of f we get the correct equations

(x0 : x1 : x2 : x3) = (x2
0 : x0x1 : x0x2 : x0x3) = (x2

0 : x0x1 : x0x2 : x1x2) = (y2
0 : y0y1 : y0y2 : y1y2)

for the image point to lie in P̃2. Conversely, on P̃2 we have (x0 : x1 : x2 : x3) = (y2
0 : y0y1 :

y0y2 : y1y2) where defined, so we conclude x0x3 = x1x2 and (y0 : y1 : y2) = (x0 : x1 : x2). �

Remark 4.3.13. The proof of lemma 4.3.12 is short and elegant, but not very insightful.
Let us try to understand geometrically what is going on.

As in the proof, we think of P1×P1 as the quadric

Q = {(x0 : x1 : x2 : x3) ; x0x3 = x1x2} ⊂ P3.
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Consider the projection π from P to P2, given in coordinates by π(x0 : x1 : x2 : x3) = (x0 :
x1 : x2). We have considered projections from points before, but so far the projection point
P was always assumed not to lie on the given variety Q. This is not the case here, and
consequently π is only well-defined on Q\P. To construct π(P) we would have to take
“the line through P and P” and intersect it with a given P2 ⊂ P3 that does not contain
P. Of course this is ill-defined. But there is a well-defined line through P and any point
P′ near P which we can intersect with P2. It is obvious that π(P) should be the limit of
these projection points when P′ tends to P. The line P′P will then become a tangent line
to Q. But Q, being two-dimensional, has a one-parameter family of tangent lines. This is
why π(P) is ill-defined. But we also see from this discussion that blowing up P on Q, i. e.
replacing it by the set of tangent lines through P, will exactly resolve the indeterminacy.

We have thus constructed a morphism Q̃ = P̃1×P1→ P2 by projection from P. If there
is an inverse morphism, it is easy to see what it would have to look like: pick a point
R ∈ P2 ⊂ P3. The points mapped to R by π are exactly those on the line PR not equal to
P. In general, this line intersects the quadric Q in two points, one of which is P. So there
is exactly one point on Q which maps to R. This reasoning is false however if the whole
line PR = P1 lies in Q. This whole line would then be mapped to R, so that we cannot have
an isomorphism. But of course we expect again that this problem can be taken care of by
blowing up R in P2, so that it is replaced by a P1 that can then be mapped one-to-one to
PR.

There are obviously two such lines PR1 and PR2, given by R1 = (0 : 1 : 0) and R2 = (0 :
0 : 1). If you think of Q as P1×P1 again, these lines are precisely the “horizontal” and
“vertical” lines P1×{point} and {point}×P1 passing through P. So we would expect that
π̃ can be made into an isomorphism after blowing up R1 and R2, which is what we have
shown in lemma 4.3.12.

R1
R2 PI 2

Q

P

P’

(π )P’

4.4. Smooth varieties. Let X ⊂ An be an affine variety, and let P ∈ X be a point. By a
change of coordinates let us assume that P = (0, . . . ,0) is the origin. In remark 4.3.8 we
have defined the tangent cone of X in P to be the closed subset of An given by the initial
ideal of X , i. e. the “local approximation” of X around P given by keeping only the terms
of the defining equations of X of minimal degree. Let us now make a similar definition,
but where we only keep the linear terms of the defining equations.

Definition 4.4.1. For any polynomial f ∈ k[x1, . . . ,xn] denote by f (1) the linear part of f .
For an ideal I ⊂ k[x1, . . . ,xn] denote by I(1) = { f (1) ; f ∈ I} the vector space of all linear
parts of the elements of I; this is by definition a vector subspace of the n-dimensional space
k[x1, . . . ,xn]

(1) of all linear forms

{a1x1 + · · ·+anxn ; ai ∈ k}.



64 Andreas Gathmann

The zero locus Z(I(1)) is then a linear subspace of An. It is canonically dual (as a vector
space) to k[x1, . . . ,xn]

(1)/I(1), since the pairing

k[x1, . . . ,xn]
(1)/I(1)×Z(I(1))→ k, ( f ,P) 7→ f (P)

is obviously non-degenerate.
Now let X ⊂ An be a variety. By a linear change of coordinates, assume that P =

(0, . . . ,0) ∈ X . Then the linear space Z(I(X)(1)) is called the tangent space to X at P and
denoted TX ,P.

Remark 4.4.2. Let us make explicit the linear change of coordinates mentioned in the
definition. If P= (a1, . . . ,an)∈X , we need to change coordinates from the xi to yi = xi−ai.
By a (purely formal) Taylor expansion we can rewrite any polynomial f ∈ k[x1, . . . ,xn] as

f (x1, . . . ,xn) = f (P)+∑
i

∂ f
∂xi

(P) · yi + (terms at least quadratic in the yi),

so we see that the tangent space TX ,P to any point P = (a1, . . . ,an) ∈ X is given by the
equations

∑
i

∂ f
∂xi

(P) · (xi−ai) = 0

for all f ∈ I(X).

Here is an alternative description of the tangent space. For simplicity, we will assume
again that the coordinates have been chosen such that P = (0, . . . ,0).

Lemma 4.4.3. Let X ⊂ An be a variety, and assume that P = (0, . . . ,0) ∈ X. Then

k[x1, . . . ,xn]
(1)/I(X)(1) = M/M2,

where M = {ϕ ; ϕ(P) = 0} ⊂ OX ,P is the maximal ideal in the local ring of X at P.

Proof. Recall that

OX ,P =
{ f

g
; f ,g ∈ A(X),g(P) 6= 0

}
,

and therefore

M =
{ f

g
; f ,g ∈ A(X), f (P) = 0,g(P) 6= 0

}
.

There is an obvious homomorphism k[x1, . . . ,xn]
(1)/I(X)(1)→M/M2 of k-vector spaces.

We will show that it is bijective.
Injectivity: Let f ∈ k[x1, . . . ,xn]

(1) be a linear function. Then f
1 is zero in OX ,P if and

only if it is zero in A(X), i. e. if and only if f ∈ I(X).

Surjectivity: Let ϕ = f
g ∈M. Without loss of generality we can assume that g(P) = 1.

Set

ϕ
′ = ∑

i

∂ϕ

∂xi
(P) · xi,
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which is obviously an element of k[x1, . . . ,xn]
(1). We claim that ϕ−ϕ′ ∈M2. In fact,

g(ϕ−ϕ
′) = f −g ∑

i

∂ f
∂xi

(P)g(P)− ∂g
∂xi

(P) f (P)

g(P)2 xi

= f −g ∑
i

∂ f
∂xi

(P) xi

≡ f −g(P) ∑
i

∂ f
∂xi

(P) xi (mod M2) (as g−g(P) and xi are in M)

= f −∑
i

∂ f
∂xi

(P) xi

≡ 0 (mod M2) (as this is the linear Taylor expression for f ).

So ϕ = ϕ′ in M/M2. �

Remark 4.4.4. In particular, this lemma gives us a more intrinsic definition of the tangent
space TX ,P: we can say that TX ,P is the dual of the k-vector space M/M2, where M is the
maximal ideal in the local ring OX ,P. This alternative definition shows that the tangent
space TX ,P (as an abstract vector space) is independent of the chosen embedding of X in
affine space. It also allows us to define the tangent space TX ,P for any variety X (that is not
necessarily affine).

Let us now compare tangent spaces to tangent cones.

Remark 4.4.5. Let X be an affine variety, and assume for simplicity that P= (0, . . . ,0)∈ X .
For all polynomials f ∈ k[x1, . . . ,xn] vanishing at P, linear terms are always initial. Hence
the ideal generated by I(X)(1) is contained in the ideal I(X)in defining the tangent cone (see
remark 4.3.8). So the tangent cone CX ,P ⊂ An is contained in the tangent space TX ,P ⊂ An.
In particular, we always have dimTX ,P ≥ dimCX ,P = dimX . Summarizing, we can say that,
in studying the local properties of X around P, the tangent cone has the advantage that it
always has the “correct” dimension dimX , whereas the tangent space has the advantage
that it is always a linear space. We should give special attention to those cases when both
notions agree, i. e. when X “can be approximated linearly” around P.

Definition 4.4.6. A variety X is called smooth at the point P ∈ X if TX ,P =CX ,P, or equiv-
alently, if the tangent space TX ,P to X at P has dimension (at most) dimX . It is called
singular at P otherwise. We say that X is smooth if it is smooth at all points P ∈ X ;
otherwise X is singular.

Example 4.4.7. Consider again the curves of example 4.3.9:

(i) X = {y = x(x−1)} ⊂ A2,
(ii) X = {y2 = x2 + x3} ⊂ A2,

(iii) X = {y2 = x3} ⊂ A2.

In case (i), the tangent space is {y = −x} ⊂ A2 and coincides with the tangent cone: X is
smooth at P = (0,0). In the cases (ii) and (iii), there are no linear terms in the defining
equations of X . So the tangent space of X at P is all of A2, whereas the tangent cone is
one-dimensional. Hence in these cases X is singular at P.

In case (iii) let us now consider the blow-up of X in P = (0,0). Let us first blow up the
ambient space A2 in P; we know already that this is given by

Ã2 = {((x,y),(x′ : y′)) ; xy′ = x′y} ⊂ A2×P1.

So local affine coordinates of Ã2 around the point ((0,0),(1 : 0)) are (u,v) ∈ A2, where

u =
y′

x′
and v = x
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so that ((x,y),(x′ : y′)) = ((v,uv),(1 : u)). In these local coordinates, the equation y2 = x3

of the curve X is given by (uv)2 = v3. The exceptional hypersurface has the local equation
v = 0, so away from this hypersurface the curve X is given by the equation v = u2. By
definition, this is then also the equation of the blow-up X̃ .

So we conclude first of all that the blow-up X̃ is smooth, although X was not. We say
that the singularity P ∈ X got “resolved” by blowing up. We can also see that the blow-up
of the curve (with local equation v = u2) is tangent to the exceptional hypersurface (with
local equation v = 0). All this is illustrated in the following picture (the blow-up of A2 is
the same as in example 4.3.4):

π−1(0,0)

X
~

π

X

It can in fact be shown that every singularity can be “resolved” in a similar way by succes-
sively blowing up the singular locus.

The good thing about smoothness is that is very easy to check:

Proposition 4.4.8.

(i) (Affine Jacobi criterion) Let X ⊂ An be an affine variety with ideal I(X) =
( f1, . . . , fr), and let P ∈ X be a point on X. Then X is smooth at P if and only
if the rank of the r×n “Jacobi matrix”

(
∂ fi
∂x j

(P)
)

is (at least) n−dimX.
(ii) (Projective Jacobi criterion) Let X ⊂ Pn be a projective variety with ideal I(X) =

( f1, . . . , fr), and let P ∈ X be a point on X. Then X is smooth at P if and only if
the rank of the r×n Jacobi matrix

(
∂ fi
∂x j

(P)
)

is (at least) n−dimX.

In particular, if the rank is r (the number of functions) then X is smooth of dimension n− r.

Proof. (i): By remark 4.4.2, the linearization of the functions fi around the point P =

(a1, . . . ,an) is given by ∑ j
∂ fi
∂x j

(P) · (xi−ai). By definition, X is smooth at P if these func-
tions define a linear subspace of An of dimension (at most) dimX , i. e. if and only if the
linear subspace of k[x1, . . . ,xn]

(1) spanned by the above linearizations has dimension (at
least) n− dimX . But the dimension of this linear space is exactly the rank of the matrix
whose entries are the coefficients of the various linear function.

(ii): This follows easily by covering the projective space Pn by the n+ 1 affine spaces
{xi 6= 0} ∼= An, and applying the criterion of (i) to these n+1 patches. �

Remark 4.4.9. Note that a matrix has rank less than k if and only if all k× k minors are
zero. These minors are all polynomials in the entries of the matrix. In particular, the
locus of singular points, i. e. where the Jacobi matrix has rank less than n−dimX as in the
proposition, is closed.

It follows that the set

{P ∈ X ; X is singular at P} ⊂ X
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is closed. In other words, the set of smooth points of a variety is always open. One can
show that the set of smooth points is also non-empty for every variety (see e. g. [H] theorem
I.5.3). Hence the set of smooth points is always dense.
Example 4.4.10.

(i) For given n and d, let X be the so-called Fermat hypersurface

X = {(x0 : · · · : xn) ; xd
0 + · · ·+ xd

n = 0}.

Then the Jacobi matrix has only one row, and the entries of this row are d xd−1
i

for i = 0, . . . ,n. Assuming that the characteristic of the ground field is zero (or at
least not a divisor of d), it follows that at least one of the entries of this matrix is
non-zero at every point. In other words, the rank of the Jacobi matrix is always 1.
Therefore X is smooth by proposition 4.4.8.

(ii) Let X be the “twisted cubic curve” of exercise 3.5.2

X = {(s3 : s2t : st2 : t3) ; (s : t) ∈ P1}.
We have seen earlier that X can be given by the equations

X = {(x0 : x1 : x2 : x3) ; x2
1− x0x2 = x2

2− x1x3 = x0x3− x1x2 = 0}.
So the Jacobi matrix is given by −x2 2x1 −x0 0

0 −x3 2x2 −x1
x3 −x2 −x1 x0

 .

By proposition 4.4.8, X is smooth if and only if the rank of this matrix is 2. (We
know already that the rank cannot be bigger than 2, which is also easily checked
directly).

The 2× 2 minor given by the last two rows and the first two columns is x2
3.

The 2×2 minor given by last two rows and the first and last column is x1x3 = x2
2.

Similarly we find 2×2 minors that are x2
1 and x2

0. These cannot all be simultane-
ously zero; hence X is smooth. (Of course we have known this before, since X is
just the degree-3 Veronese embedding of P1 (see example 3.4.11. In particular, X
is isomorphic to P1 and therefore smooth.)

Remark 4.4.11. The Jacobi criterion of proposition 4.4.8 gives us a direct connection to
complex analysis. Assume that we are given r holomorphic functions on Cn (e. g. poly-
nomials), and that the matrix of the derivatives of the fi has rank n− dimX at a point
P, where X is the zero locus of the fi. Assume for simplicity that the square matrix(

∂ fi
∂x j

(P)
)

1≤i≤n−dimX ,dimX< j≤n
of size n− dimX is invertible. Then the inverse function

theorem states that the coordinates xdimX+1, . . . ,xn are locally around P determined by the
other coordinates x1, . . . ,xdimX . Thus there is a neighborhood U of P in Cn (in the classical
topology!) and holomorphic functions gdimX+1, . . . ,gn of x1, . . . ,xdimX such that for every
P = (x1, . . . ,xdimX ) ∈U the functions fi vanish at P if and only if xi = gi(x1, . . . ,xdimX ) for
i = dimX +1, . . . ,n.

So the zero locus of the fi is “locally the graph of a holomorphic map” given by the
gi. In other words, smoothness in algebraic geometry means in a sense the same thing as
differentiability in analysis: the geometric object has “no edges”.

Note however that the inverse function theorem is not true in the Zariski topology, be-
cause the open sets are too big. For example, consider the curve X = {(x,y) ; f (x,y) =
y− x2 = 0} ⊂ C2. Then ∂ f

∂x 6= 0 say at the point P = (1,1) ∈ X . Consequently, in complex
analysis x can be expressed locally in terms of y around P: it is just the square root of y. But
any non-empty Zariski open subset of X will contain pairs of points (x,x2) and (−x,x2) for
some x, so the inverse function theorem cannot hold here in algebraic geometry.
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4.5. The 27 lines on a smooth cubic surface. As an application of the theory that we
have developed so far, we now want to study lines on cubic surfaces in P3. We have
already mentioned in example 0.1.7 that every smooth cubic surface has exactly 27 lines
on it. We now want to show this. We also want to study the configuration of these lines,
and show that every smooth cubic surface is birational to P2.

The results of this section will not be needed later on. Therefore we will not give all the
proofs in every detail here. The goal of this section is rather to give an idea of what can be
done with our current methods.

First let us recall some notation from exercise 3.5.4. Let G = G(1,3) be the Grass-
mannian variety of lines in P3. This is a 4-dimensional projective variety. In this section
we will use local affine coordinates on G: if L0 ∈ G is the line in P3 (with coordinates
x0, . . . ,x3) given by the equations x2 = x3 = 0 (of course every line is of this form after a
linear change of coordinates), then there is an open neighborhood A4 ⊂G of L0 in G given
by sending a point (a,b) := (a2,b2,a3,b3) ∈ A4 to the line through the points (1,0,a2,a3)
and (0,1,b2,b3).

The cubic surfaces in P3 are parametrized by homogeneous polynomials of degree 3
in x0,x1,x2,x3 up to scalars, which is a 19-dimensional projective space P19. A cubic
surface given by the equation fc := ∑α cαxα = 0 (in multi-index notation, so α runs over
all quadruples of indices (α0,α1,α2,α3) with αi ≥ 0 and ∑i αi = 3) corresponds to the
point in P19 with homogeneous coordinates c = (cα). We denote the corresponding cubic
surface by Xc = { fc = 0}.

To study lines in cubic surfaces, we consider the so-called incidence correspondence

M := {(L,X) ; L⊂ X} ⊂ G×P19

consisting of all pairs of a line and a cubic such that the line lies in the cubic. Let us start
by proving some facts about this incidence correspondence.

Lemma 4.5.1. With the above notation, the incidence correspondence M has an open
cover by affine spaces A19. In particular, M is a smooth 19-dimensional variety.

Proof. In the coordinates (a,b,c) = (a2,a3,b2,b3,cα) as above, the incidence correspon-
dence M is given by the equations

(a,b,c) ∈M ⇐⇒ s(1,0,a2,a3)+ t (0,1,b2,b3) ∈ Xc for all s, t

⇐⇒ ∑
α

cαsα0tα1(sa2 + t b2)
α2(sa3 + t b3)

α3 = 0 for all s, t

⇐⇒ : ∑
i

sit3−iFi(a,b,c) = 0 for all s, t

⇐⇒ Fi(a,b,c) = 0 for 0≤ i≤ 3.

Note that the Fi are linear in the cα. Moreover, ci,3−i,0,0 occurs only in Fi for i= 0, . . . ,3, and
it occurs there with coefficient 1. So these equations can be written as ci,3−i,0,0 =Gi(a,b,c)
for i = 0, . . . ,3, where the Gi depend only on those cα where α2 > 0 or α3 > 0. Therefore
the variety A4×P15 (with coordinates a2,a3,b2,b3, and all cα with α2 > 0 or α3 > 0)
is isomorphic to an open subvariety of M, with the isomorphism given by the equations
ci,3−i,0,0 = G(a,b,c). It follows that M has an open cover by affine spaces A4×A15 =

A19. �

Lemma 4.5.2. Again with notations as above, let (a,b,c) ∈ M be a point such that the
corresponding cubic surface Xc is smooth. Then the 4×4 matrix ∂(F0,F1,F2,F3)

∂(a2,a3,b2,b3)
is invertible.
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Proof. After a change of coordinates we can assume for simplicity that a = b = 0. Then

∂

∂a2
(∑

i
sit3−iFi)|(0,0,c) =

∂

∂a2
fc(s, t,sa2 + t b2,sa3 + t b3)|(0,0,c)

= s
∂ fc

∂x2
(s, t,0,0).

The (s, t)-coefficients of this polynomial are the first row in the matrix ∂Fi
∂(a,b) (0,0,c). The

other rows are obviously s ∂ fc
∂x3

(s, t,0,0), t ∂ fc
∂x2

(s, t,0,0), and t ∂ fc
∂x3

(s, t,0,0). So if the matrix
∂Fi

∂(a,b) (0,0,c) were not invertible, there would be a relation

(λ2s+µ2t)
∂ fc

∂x2
(s, t,0,0)+(λ3s+µ3t)

∂ fc

∂x3
(s, t,0,0) = 0

identically in s, t, with (λ2,µ2,λ3,µ3) 6= (0,0,0,0). But this means that ∂ fc
∂x2

(s, t,0,0) and
∂ fc
∂x3

(s, t,0,0) have a common linear factor, i. e. there is a point P = (x0,x1,0,0) ∈ P3 such

that ∂ fc
∂x2

(P) = ∂ fc
∂x3

(P) = 0. But as the line L0 lies in the cubic fc, we must have fc =

x2 · g2(x0,x1,x2,x3) + x3 · g3(x0,x1,x2,x3) for some g2,g3. Hence ∂ fc
∂x0

(P) = ∂ fc
∂x1

(P) = 0
also, which means that P is a singular point of the cubic Xc. This is a contradiction to our
assumptions. �

Remark 4.5.3. By remark 4.4.11, lemma 4.5.2 means that locally (in the classical topology)
around any point (a,b,c) ∈ M such that Xc is smooth, the coordinates a2,a3,b2,b3 are
determined uniquely in M by the cα. In other words, the projection map π : M→ P19 is a
local isomorphism (again in the classical topology!) around such a point (a,b,c) ∈M. So
the local picture looks as follows:

IP 19

π

M

As the number of lines in a given cubic Xc is just the number of inverse image points of
c ∈ P19 under this projection map, it follows that the number of lines on a smooth cubic
surface is independent of the particular cubic chosen.

Theorem 4.5.4. Every smooth cubic surface X ⊂ P3 contains exactly 27 lines.

Proof. We have just argued that the number of lines on a smooth cubic surface does not
depend on the surface, so we can pick a special one. We take the surface X given by
the equation f = x3

0 + x3
1 + x3

2 + x3
3 = 0 (which is smooth in characteristic not equal to

3). Up to a permutation of coordinates, every line in P3 can be written x0 = a2x2 + a3x3,
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x1 = b2x2 +b3x3. Substituting this in the equation f yields the conditions

a3
2 +b3

2 =−1, (1)

a3
3 +b3

3 =−1, (2)

a2
2a3 =−b2

2b3, (3)

a2a2
3 =−b2b2

3. (4)

Assume that a2,a3,b2,b3 are all non-zero. Then (3)2/(4) gives a3
2 =−b3

2, while (4)2/(3)
yields a3

3 =−b3
3. This is obviously a contradiction to (1) and (2). Hence at least one of the

a2,a3,b2,b3 must be zero. Assume without loss of generality that a2 = 0. Then b3 = 0 and
a3

3 = b3
2 =−1. This gives 9 lines by setting a3 =−ωi and b2 =−ω j for 0≤ i, j ≤ 2 and ω

a third root of unity. So by allowing permutations of the coordinates we find that there are
exactly the following 27 lines on X :

x0 + x1ω
i = x2 + x3ω

j = 0, 0≤ i, j ≤ 2,

x0 + x2ω
i = x1 + x3ω

j = 0, 0≤ i, j ≤ 2,

x0 + x3ω
i = x1 + x2ω

j = 0, 0≤ i, j ≤ 2.

�

Remark 4.5.5. We will now study to a certain extent the configuration of the 27 lines on a
cubic surface, i. e. determine which of the lines intersect. Consider the special cubic X of
the proof of theorem 4.5.4, and let L be the line

L = {x0 + x1 = x2 + x3 = 0}

in X . Then we can easily check that L meets exactly 10 of the other lines in X , namely

x0 + x1ω
i = x2 + x3ω

j = 0, (i, j) 6= (0,0)
x0 + x2 = x1 + x3 = 0,
x0 + x3 = x1 + x2 = 0.

The same is true for every other line in X . In fact, the statement is also true for every
smooth cubic surface, and not just for the special one that we have just considered. The
proof of this is very similar to the proof above that the number of lines on a smooth cubic
surface does not depend on the particular cubic chosen.

Now let L1 and L2 be two disjoint lines on a smooth cubic surface X . We claim that
there are exactly 5 lines on X that intersect both L1 and L2. To show this, one can proceed
in the same way as above: check the statement directly on a special cubic surface, and then
show that it must then be true for all other smooth cubic surfaces as well.

Proposition 4.5.6. Any smooth cubic surface in P3 is birational to P2.

Proof. By remark 4.5.5 there are two disjoint lines L1,L2 ⊂ X . The following mutually
inverse rational maps X 99K L1×L2 and L1×L2 99K X show that X is birational to P1×P1

and hence to P2:
“X 99K L1×L2”: By exercise 3.5.1, for every point P not on L1 or L2 there is a unique

line L(P) in P3 through L1, L2 and P. Take the rational map P 7→ (L1 ∩L(P),L2 ∩L(P))
that is obviously well-defined away from L1∪L2.

“L1×L2 99K X”: Map any pair of points (P,Q) ∈ L1×L2 to the third intersection point
of X with the line PQ. This is well-defined whenever PQ is not contained in X . �

Proposition 4.5.7. Any smooth cubic surface in P3 is isomorphic to P1×P1 blown up in
5 (suitably chosen) points, or equivalently, to P2 blown up in 6 (suitably chosen) points.
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Proof. We will only sketch the proof. Let X be a smooth cubic surface, and let f : X 99K
L1×L2 ∼= P1×P1 be the rational map as in the proof of proposition 4.5.6.

First of all we claim that f is actually a morphism. To see this, note that there is a
different description for f : if P ∈ X\L1, let H be the unique plane in P3 that contains L1
and P, and let f2(P) = H ∩L2. If one defines f1(P) similarly, then f (P) = ( f1(P), f2(P)).
Now if the point P lies on L1, let H be the tangent plane to X at P, and again let f2(P) =
H∩L2. Extending f1 similarly, one can show that this extends f =( f1, f2) to a well-defined
morphism X → P1×P1 on all of X .

Now let us investigate where the inverse map P1×P1 99K X is not well-defined. As
already mentioned in the proof of proposition 4.5.6, this is the case if the point (P,Q) ∈
L1×L2 is such that PQ⊂ X . In this case, the whole line PQ∼= P1 will be mapped to (P,Q)
by f , and it can be checked that f is actually locally the blow-up of this point. By remark
4.5.5 there are exactly 5 such lines PQ on X . Hence f is the blow-up of P1×P1 at 5 points.

By lemma 4.3.12 it then follows that f is also the blow-up of P2 in 6 suitably chosen
points. �

Remark 4.5.8. It is interesting to see the 27 lines on a cubic surface X in the picture where
one thinks of X as a blow-up of P2 in 6 points. It turns out that the 27 lines correspond to
the following curves that we all already know (and that are all isomorphic to P1):

• the 6 exceptional hypersurfaces,
• the strict transforms of the

(6
2

)
= 15 lines through two of the blown-up points,

• the strict transforms of the
(6

5

)
= 6 conics through five of the blown-up points (see

exercise 3.5.8).

In fact, it is easy to see by the above explicit description of the isomorphism of X with the
blow-up of P2 that these curves on the blow-up actually correspond to lines on the cubic
surface.

It is also interesting to see again in this picture that every such “line” meets 10 of the
other “lines”, as mentioned in remark 4.5.5:

• Every exceptional hypersurface intersects the 5 lines and the 5 conics that pass
through this blown-up point.

• Every line through two of the blown-up points meets
– the 2 exceptional hypersurfaces of the blown-up points,
– the

(4
2

)
= 6 lines through two of the four remaining points,

– the 2 conics through the four remaining points and one of the blown-up
points.

• Every conic through five of the blown-up points meets the 5 exceptional hyper-
surfaces at these points, as well as the 5 lines through one of these five points and
the remaining point.

4.6. Exercises.

Exercise 4.6.1. Let X ,Y ⊂ Pn be projective varieties. Show that X ∩Y is not empty if
dimX +dimY ≥ n.

On the other hand, give an example of a projective variety Z and closed subsets X ,Y ⊂ Z
with dimX +dimY ≥ dimZ and X ∩Y = /0.

(Hint: Let H1,H2 be two disjoint linear subspaces of dimension n in P2n+1, and consider
X ⊂ Pn ∼= H1 ⊂ P2n+1 and Y ⊂ Pn ∼= H2 ⊂ P2n+1 as subvarieties of P2n+1. Show that the
join J(X ,Y ) ⊂ P2n+1 of exercise 3.5.7 has dimension dimX + dimY + 1. Then construct
X ∩Y as a suitable intersection of J(X ,Y ) with n+1 hyperplanes.)
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Exercise 4.6.2. (This is a generalization of corollary 4.2.7). Let f : X →Y be a morphism
of varieties. Show that there is a non-empty open subset U of Y such that every component
of the fiber f−1(P) has dimension dimX−dimY for all P ∈U .

(Hint: You can assume X ⊂ An and Y ⊂ Am to be affine. By considering the graph
(P, f (P)) ∈ An+m, reduce to the case where f : An+1→ An is the projection map.)

Exercise 4.6.3. Let f : X → Y be a morphism of varieties, and let Z ⊂ X be a closed
subset. Assume that f−1(P)∩Z is irreducible and of the same dimension for all P ∈ Y .
Use exercise 4.6.2 to prove that then Z is irreducible too. (This is a quite useful criterion
to check the irreducibility of closed subsets.)

Show by example that the conclusion is in general false if the f−1(P)∩Z are irreducible
but not all of the same dimension.

Exercise 4.6.4. Let X be a variety, and let Y ⊂ X a closed subset. For every element in an
open affine cover {Ui} of X , let Vi = Ui ∩Y , and let Ũi be the blow-up of Ui at Vi. Show
that the spaces Ũi can be glued together to give a variety X̃ . (This variety is then called the
blow-up of X at Y .)

Exercise 4.6.5. A quadric in Pn is a projective variety in Pn that can be given as the zero
locus of a quadratic polynomial. Show that every quadric in Pn is birational to Pn−1.

Exercise 4.6.6. Show that for four general lines L1, . . . ,L4 ⊂ P3, there are exactly two
lines in P3 intersecting all the Li. (This means: the subset of G(1,3)4 of all (L1, . . . ,L4)
such that there are exactly two lines in P3 intersecting L1, . . . ,L4 is dense. You may want
to use the result of exercise 3.5.4 (iii) that G(1,3) is a quadric in P5.)

Exercise 4.6.7. Let P1 = (1 : 0 : 0),P2 = (0 : 1 : 0),P3 = (0 : 0 : 1) ∈ P2, and let U =
P2\{P1,P2,P3}. Consider the morphism

f : U 7→ P2,(a0 : a1 : a2) 7→ (a1a2 : a0a2 : a0a1).

(i) Show that there is no morphism F : P2→ P2 extending f .
(ii) Let P̃2 be the blow-up of P2 in the three points P1,P2,P3. Show that there is an

isomorphism f̃ : P̃2→ P̃2 extending f . This is called the Cremona transforma-
tion.

Exercise 4.6.8. Let X ⊂ An be an affine variety. For every f ∈ k[x0, . . . ,xn] denote by
f in the initial terms of f , i. e. the terms of f of the lowest occurring degree (e. g. if f =
x2

2 + 3x1x3− x2x2
3 then the lowest occurring degree in f is 2, so the initial terms are the

terms of degree 2, namely f in = x2
2 +3x1x3). Let I(X)in = { f in ; f ∈ I(X)} be the ideal of

the initial terms in I(X).
Now let π : X̃ → X be the blow-up of X in the origin {0}= Z(x1, . . . ,xn). Show that the

exceptional hypersurface π−1(0) ⊂ Pn is precisely the projective zero locus of the homo-
geneous ideal I(X)in.

Exercise 4.6.9. Let X ⊂ An be an affine variety, and let P ∈ X be a point. Show that the
coordinate ring A(CX ,P) of the tangent cone to X at P is equal to⊕k≥0I(P)k/I(P)k+1, where
I(P) is the ideal of P in A(X).

Exercise 4.6.10. Let X ⊂ An be an affine variety, and let Y1,Y2 ( X be irreducible, closed
subsets, no-one contained in the other. Let X̃ be the blow-up of X at the (possibly non-
radical, see exercise 1.4.1) ideal I(Y1)+ I(Y2). Then the strict transforms of Y1 and Y2 on X̃
are disjoint.

Exercise 4.6.11. Let C⊂ P2 be a smooth curve, given as the zero locus of a homogeneous
polynomial f ∈ k[x0,x1,x2]. Consider the morphism

ϕC : C→ P2, P 7→
(

∂ f
∂x0

(P) :
∂ f
∂x1

(P) :
∂ f
∂x2

(P)
)
.
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The image ϕC(C)⊂ P2 is called the dual curve to C.

(i) Find a geometric description of ϕ. What does it mean geometrically if ϕ(P) =
ϕ(Q) for two distinct points P,Q ∈C ?

(ii) If C is a conic, prove that its dual ϕ(C) is also a conic.
(iii) For any five lines in P2 in general position (what does this mean?) show that

there is a unique conic in P2 that is tangent to these five lines. (Hint: Use exercise
3.5.8.)

Exercise 4.6.12. Resolve the singularities of the following curves by subsequent blow-ups
of the singular points. This means: starting with the given curve C, blow up all singular
points of C, and replace C by its strict transform. Continue this process until the resulting
curve is smooth.

Also, describe the singularities that occur in the intermediate steps of the resolution
process.

(i) C = {(x,y) ; x2− x4− y4 = 0} ⊂ A2,
(ii) C = {(x,y) ; y3− x5 = 0} ⊂ A2,

(iii) C = {(x,y) ; y2− xk = 0} ⊂ A2, k ∈ N.

Exercise 4.6.13. Show that “a general hypersurface in Pn is smooth”. In other words, for
any given d we can consider P(

n+d
d )−1 as the “space of all hypersurfaces of degree d in

Pn”, by associating to any hypersurface { f (x0, . . . ,xn) = 0} ⊂ Pn with f homogeneous of
degree d the projective vector of all

(n+d
d

)
coefficients of f . Then show that the subset of

P(
n+d

d )−1 corresponding to smooth hypersurfaces is non-empty and open.

Exercise 4.6.14. (This is a generalization of exercises 3.5.8 and 4.6.11 (iii).) For i =
0, . . . ,5, determine how many conics there are in P2 that are tangent to i given lines and in
addition pass through 5− i given points.


