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3. PROJECTIVE VARIETIES

Similarly to the affine case, a subset of projective n-space Pn over k is called a projec-
tive algebraic set if it can be written as the zero locus of a (finite) set of homogeneous
polynomials. The Zariski topology on Pn is the topology whose closed sets are the
projective algebraic sets. The concepts of irreducibility and dimension are purely
topological and extend therefore immediately to subsets of projective space. We
prove a projective version of the Nullstellensatz and make projective varieties into
ringed spaces that are varieties.

The main property of projective varieties distinguishing them from affine varieties
is that (over C in the classical topology) they are compact. In terms of algebraic
geometry this translates into the statement that if f : X → Y is a morphism between
projective varieties then f (X) is closed in Y .

3.1. Projective spaces and projective varieties. In the last section we have studied va-
rieties, i. e. topological spaces that are locally isomorphic to affine varieties. In particular,
the ability to glue affine varieties together allowed us to construct compact spaces (over the
ground field C) like e. g. P1, whereas affine varieties themselves are never compact unless
they are a single point (see exercise 3.5.6). Unfortunately, the description of a variety in
terms of its affine patches is often quite inconvenient in practice, as we have seen already
in the calculations in the last section. It would be desirable to have a global description of
the spaces that does not refer to glueing methods.

Projective varieties form a large class of “compact” varieties that do admit such a unified
global description. In fact, the class of projective varieties is so large that it is not easy to
construct a variety that is not (an open subset of) a projective variety.

To construct projective varieties, we need to define projective spaces first. Projective
spaces are “compactifications” of affine spaces. We have seen P1 already as a compact-
ification of A1; general projective spaces are an extension of this construction to higher
dimensions.

Definition 3.1.1. We define projective nnn-space over k, denoted Pn, to be the set of all
one-dimensional linear subspaces of the vector space kn+1.

Remark 3.1.2. Obviously, a one-dimensional linear subspace of kn+1 is uniquely deter-
mined by a non-zero vector in kn+1. Conversely, two such vectors a = (a0, . . . ,an) and
b = (b0, . . . ,bn) in kn+1 span the same linear subspace if and only if they differ only by a
common scalar, i. e. if b = λa for some non-zero λ ∈ k. In other words,

Pn = {(a0, . . . ,an) ; ai ∈ k, not all ai = 0}/∼

with the equivalence relation

(a0, . . . ,an)∼ (b0, . . . ,bn) if ai = λbi for some λ ∈ k\{0} and all i.

This is often written as
Pn = (kn+1\{0})/(k\{0}),

and the point P in Pn determined by (a0, . . . ,an) is written as P= (a0 : · · · : an) (the notation
[a0, . . . ,an] is also common in the literature). So the notation (a0 : · · · : an) means that the
ai are not all zero, and that they are defined only up to a common scalar multiple. The ai
are called the homogeneous coordinates of the point P (the motivation for this name will
become obvious in the course of this section).

Example 3.1.3. Consider the one-dimensional projective space P1. Let (a0 : a1) ∈ P1 be
a point. Then we have one of the following cases:
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(i) a0 6= 0. Then P can be written as P = (1 : a) with a = a1
a0
∈ k. Obviously (1 : a) =

(1 : b) if and only if a = b, i. e. the ambiguity in the homogeneous coordinates is
gone if we fix one of them to be 1. So the set of these points is just A1. We call
a = a1

a0
the affine coordinate of the point P; it is uniquely determined by P (and

not just up to a multiple as for the homogeneous coordinates).
(ii) a0 = 0, and therefore a1 6= 0. There is just one such point that we can write as

(0 : 1).

So P1 is just A1 with one point added. This additional point (0 : 1) can be thought of as a
“point at infinity”, as you can see from the fact that its affine coordinate is formally 1

0 . So
we arrive at the same description of P1 as in example 2.4.5 (i).

Remark 3.1.4. There is a completely analogous description of Pn as An with some points
added “at infinity”: let P=(a0 : · · · : an)∈Pn be a point. Then we have one of the following
cases:

(i) a0 6= 0. Then P = (1 : α1 : · · · : αn) with αi =
ai
a0

for all i. The αi are the affine
coordinates of P; they are uniquely determined by P and are obtained by setting
a0 = 1. So the set of all P with a0 6= 0 is just An.

(ii) a0 = 0, i. e. P = (0 : a1 : · · · : an), with the ai still defined only up to a common
scalar. Obviously, the set of such points is Pn−1; the set of all one-dimensional
linear subspaces ofAn. We think of these points as points at infinity; the new twist
compared to P1 is just that we have a point at infinity for every one-dimensional
linear subspace of An, i. e. for every “direction” in An. So, for example, two
lines in An will meet at infinity (when compactified in Pn) if and only if they
are parallel, i. e. point in the same direction. (This is good as it implies that two
distinct lines always intersect in exactly one point.)

Usually, it is more helpful to think of the projective space Pn as the affine space An com-
pactified by adding some points (parametrized by Pn−1) at infinity, rather than as the set of
lines in An+1.

Remark 3.1.5. In the case k = C, we claim that Pn is a compact space (in the classical
topology). In fact, let

S2n+1 = {(a0, . . . ,an) ∈ Cn+1 ; |a0|2 + · · ·+ |an|2 = 1}

be the unit sphere in Cn+1 = R2n+2. This is a compact space as it is closed and bounded,
and there is an obvious surjective map

S2n+1→ Pn, (a0, · · · ,an) 7→ (a0 : · · · : an).

As images of compact sets under continuous maps are compact, it follows that Pn is also
compact.

Remark 3.1.6. In complete analogy to affine algebraic sets, we now want to define pro-
jective algebraic sets to be subsets of Pn that can be described as the zero locus of some
polynomials in the homogeneous coordinates. Note however that if f ∈ k[x0, . . . ,xn] is an
arbitrary polynomial, it does not make sense to write down a definition like

Z( f ) = {(a0 : · · · : an) ; f (a0, . . . ,an) = 0},

because the ai are only defined up to a common scalar. For example, if f (x0,x1) = x2
1− x0

then f (1,1) = 0 but f (−1,−1) 6= 0, although (1 : 1) and (−1 : −1) are the same point in
P1. To get rid of this problem we have to require that f be homogeneous, i. e. that all of
its monomials have the same (total) degree d. This is equivalent to the requirement

f (λx0, . . . ,λxn) = λ
d f (x0, . . . ,xn) for all λ,
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so in particular we see that

f (λx0, . . . ,λxn) = 0 ⇐⇒ f (x0, . . . ,xn) = 0,

i. e. the condition that a homogeneous polynomial in the homogeneous coordinates van-
ishes is indeed well-defined.

Definition 3.1.7. For every f ∈ k[x0, . . . ,xn] let f (d) denote the degree-d part of f , i. e.
f = ∑ f (d) with f (d) homogeneous of degree d for all d.

Lemma 3.1.8. Let I ⊂ k[x0, . . . ,xn] be an ideal. The following are equivalent:

(i) I can be generated by homogeneous polynomials.
(ii) For every f ∈ I we have f (d) ∈ I for all d.

An ideal that satisfies these conditions is called homogeneous.

Proof. (i) ⇒ (ii): Let I = ( f1, . . . , fm) with all fi homogeneous. Then every f ∈ I can
be written as f = ∑i ai fi for some ai ∈ k[x0, . . . ,xn] (which need not be homogeneous).
Restricting this equation to the degree-d part, we get f (d) = ∑i(ai)

(d−deg fi) fi ∈ I.
(ii) ⇒ (i): Any ideal can be written as I = ( f1, . . . , fm) with the fi possibly not being

homogeneous. But by (ii) we know that all f (d)i are in I too, so it follows that I is generated
by the homogeneous polynomials f (d)i . �

Remark 3.1.9. Note that it is not true that every element of a homogeneous ideal I is a
homogeneous polynomial: we can always add two polynomials of I to get another element
of I, even if they do not have the same degree.

With the exception of the homogeneity requirement, the following constructions are
now completely analogous to the affine case:

Definition 3.1.10. Let I ⊂ k[x0, . . . ,xn] be a homogeneous ideal (or a set of homogeneous
polynomials). The set

Z(I)Z(I)Z(I) := {(a0 : · · · : an) ∈ Pn ; f (a0, . . . ,an) = 0 for all f ∈ I}
is called the zero locus of I; this is well-defined by remark 3.1.6. Subsets of Pn that are of
the form Z(I) are called algebraic sets. If X ⊂ Pn is any subset, we call

I(X)I(X)I(X) :=the ideal generated by

{ f ∈ k[x0, . . . ,xn] homogeneous ; f (a0, . . . ,an) = 0 for all (a0 : · · · : an) ∈ X}
⊂ k[x0, . . . ,xn]

the ideal of X ; by definition this is a homogeneous ideal.
If we want to distinguish between the affine zero locus Z(I)⊂ An+1 and the projective

zero locus Z(I)⊂ Pn of the same (homogeneous) ideal, we denote the former by Za(I) and
the latter by Zp(I).

Remark 3.1.11. A remark that is sometimes useful is that every projective algebraic set
can be written as the zero locus of finitely many homogeneous polynomials of the same
degree. This follows easily from the fact that Z( f ) = Z(xd

0 f , . . . ,xd
n f ) for all homogeneous

polynomials f and every d ≥ 0.

Example 3.1.12. Let L ⊂ An+1 be a linear subspace of dimension k+ 1; it can be given
by n− k linear equations in the coordinates of An+1. The image of L under the quotient
map (An+1\{0})/(k\{0}) = Pn, i. e. the subspace of Pn given by the same n−k equations
(now considered as equations in the homogeneous coordinates on Pn) is called a linear
subspace of Pn of dimension k. Once we have given projective varieties the structure of
varieties, we will see that a linear subspace of Pn of dimension k is isomorphic to Pk. For
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example, a line in P3 (with homogeneous coordinates x0,x1,x2,x3) is given by two linearly
independent equations in the xi. One example is the line

{x2 = x3 = 0}= {(a0 : a1 : 0 : 0) ; a0,a1 ∈ k} ⊂ P3,

which is “obviously isomorphic” to P1.

Example 3.1.13. Consider the conics in A2

X1 = {x2 = x2
1} and X2 = {x1x2 = 1}

of exercise 2.6.1. We want to “compactify” these conics to projective algebraic sets X̃1,
X̃2 in P2. Note that for a projective algebraic set we need the defining polynomials to be
homogeneous, which is not yet the case here. On the other hand, we have an additional
coordinate x0 that you can think of as being 1 on the affine space A2 ⊂ P2. So it is obvious
that we should make the defining equations homogeneous by adding suitable powers of x0:
consider

X̃1 = {x0x2 = x2
1} and X̃2 = {x1x2 = x2

0}
in P2. Then the restriction of X̃i to the affine space A2 ⊂ P2 is just given by Xi for i = 1,2.
We call X̃i the projective completion of Xi; it can be done in the same way for all affine
varieties (see exercise 3.5.3).

Let us consider X̃1 first. The points that we add at infinity correspond to those where
x0 = 0. It follows from the defining equation that x1 = 0 as well; and then we must nec-
essarily have x2 6= 0 as the coordinates cannot be simultaneously zero. So there is only
one point added at infinity, namely (0 : 0 : 1). It corresponds to the “vertical direction” in
A2, which is the direction in which the parabola x2 = x2

1 goes off to infinity (at both ends
actually).

For X̃2, the added points have again x0 = 0. This means that x1x2 = 0, which yields the
two points (0 : 1 : 0) and (0 : 0 : 1) in P2: we added two points at infinity, one corresponding
to the “horizontal” and one to the “vertical” direction in A2. This is clear from the picture
below as the hyperbola x1x2 = 1 extends to infinity both along the x1 and the x2 axis.
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x
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x
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Note that the equations of X̃1 and X̃2 are exactly the same, up to a permutation of the
coordinates. Even if we have not given projective varieties the structure of varieties yet,
it should be obvious that X̃1 and X̃2 will be isomorphic varieties, with the isomorphism
being given by exchanging x0 and x1. Hence we see that the two distinct types of conics
in A2 become the same in projective space: there is only one projective conic in P2 up to
isomorphism. The difference in the affine case comes from the fact that some conics “meet
infinity” in one point (like X1), and some in two (like X2).

Proposition 3.1.14.

(i) If I1 ⊂ I2 are homogeneous ideals in k[x0, . . . ,xn] then Z(I2)⊂ Z(I1).
(ii) If {Ii} is a family of homogeneous ideals in k[x0, . . . ,xn] then

⋂
i Z(Ii) = Z(

⋃
i Ii)⊂

Pn.
(iii) If I1, I2 ⊂ k[x0, . . . ,xn] are homogeneous ideals then Z(I1)∪Z(I2) = Z(I1I2)⊂ Pn.
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In particular, arbitrary intersections and finite unions of algebraic sets are again algebraic
sets.

Proof. The proof is the same as in the affine case (proposition 1.1.6). �

Definition 3.1.15. We define the Zariski topology on Pn to be the topology whose closed
sets are the algebraic sets (proposition 3.1.14 tells us that this gives in fact a topology).
Moreover, any subset X of Pn (in particular any algebraic set) will be equipped with the
topology induced by the Zariski topology on Pn. This will be called the Zariski topology
on X .

Remark 3.1.16. The concepts of irreducibility and dimension introduced in section 1.3 are
purely topological ones, so they apply to projective algebraic sets (or more generally to
any subset of Pn) as well. They have the same geometric interpretation as in the affine
case. Irreducible algebraic sets in Pn are called projective varieties. As in the affine case
(see lemma 1.3.4) a projective algebraic set X is irreducible if and only if its ideal I(X) is
a prime ideal. In particular, Pn itself is irreducible.

3.2. Cones and the projective Nullstellensatz. We will now establish a correspondence
between algebraic sets in Pn and homogeneous radical ideals in k[x0, . . . ,xn], similar to
the affine case. This is quite straightforward; the only twist is that there is no zero point
(0 : · · · : 0) in Pn, and so the zero locus of the radical homogeneous ideal (x0, . . . ,xn) is
empty although the ideal is not equal to (1). So we will have to exclude this ideal from our
correspondence, which is why it is sometimes called the irrelevant ideal.

As we want to use the results of the affine case for the proof of this statement, let us first
establish a connection between projective algebraic sets in Pn and certain affine algebraic
sets in An+1.

Definition 3.2.1. An affine algebraic set X ⊂ An+1 is called a cone if it is not empty, and
if we have for all λ ∈ k

(x0, . . . ,xn) ∈ X ⇒ (λx0, . . . ,λxn) ∈ X .

If X ⊂ Pn is a projective algebraic set, then

C(X)C(X)C(X) := {(x0, . . . ,xn) |(x0 : · · · : xn) ∈ X}∪{0}

is called the cone over X (obviously this is a cone).

Remark 3.2.2. In other words, a cone is an algebraic set in An+1 that can be written
as a (usually infinite) union of lines through the origin. The cone over a projective al-
gebraic set X ⊂ Pn is the inverse image of X under the projection map An+1\{0} →
(An+1\{0})/(k\{0}) = Pn, together with the origin.

Example 3.2.3. The following picture shows an example of a (two-dimensional) cone
C(X) in A3 over the (one-dimensional) projective variety X in H = P2:

x
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L
2
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(C(X) consists only of the “boundary” of the cone, not of the “interior”.) Note that C(X)
contains the two lines L1 and L2, which correspond to “points at infinity” of the projective
space P2.

Lemma 3.2.4.

(i) Let I ( k[x0, . . . ,xn] be a homogeneous ideal. If X = Zp(I) ⊂ Pn, then C(X) =

Za(I)⊂ An+1.
(ii) Conversely, if X ⊂ Pn is a projective algebraic set and I(X) ⊂ k[x0, . . . ,xn] is its

homogeneous ideal, then I(C(X)) = I(X).

In other words, there is a one-to-one correspondence between projective algebraic sets in
Pn and affine cones in An+1, given by taking the zero locus of the same homogeneous ideal
(not equal to (1)) either in Pn or in An+1.

Proof. This is obvious from the definitions. �

Using this lemma, it is now very simple to derive a projective version of the Nullstel-
lensatz:

Proposition 3.2.5. (“The projective Nullstellensatz”)

(i) If X1 ⊂ X2 are algebraic sets in Pn then I(X2)⊂ I(X1).
(ii) For any algebraic set X ⊂ Pn we have Zp(I(X)) = X.

(iii) For any homogeneous ideal I ⊂ k[x0, . . . ,xn] such that Zp(I) is not empty we have
I(Zp(I)) =

√
I.

(iv) For any homogeneous ideal I ⊂ k[x0, . . . ,xn] such that Zp(I) is empty we have
either I = (1) or

√
I = (x0, . . . ,xn). In other words, Zp(I) is empty if and only if

(x0, . . . ,xn)
r ⊂ I for some r.

Proof. The proofs of (i) and (ii) are literally the same as in the affine case, see proposition
1.2.9.

(iii): Let X = Zp(I). Then

I(Zp(I)) = I(X) = I(C(X)) = I(Za(I)) =
√

I

by lemma 3.2.4 and the affine Nullstellensatz of proposition 1.2.9 (iii).
(iv): If Zp(I) is empty, then Za(I) is either empty or just the origin. So corollary 1.2.10

tells us that I = (1) or
√

I = (x0, . . . ,xn). In any case, this means that xki
i ∈ I for some ki, so

(x0, . . . ,xn)
k0+···+kn ⊂ I. �

Theorem 3.2.6. There is a one-to-one inclusion-reversing correspondence between alge-
braic sets in Pn and homogeneous radical ideals in k[x0, . . . ,xn] not equal to (x0, . . . ,xn),
given by the operations Z(·) and I(·).

Proof. Immediately from proposition 3.2.5. �

3.3. Projective varieties as ringed spaces. So far we have defined projective varieties
as topological spaces. Of course we want to make them into ringed spaces and finally
show that they are varieties in the sense of definitions 2.4.1 and 2.5.1. So let X ⊂ Pn be a
projective variety. First of all we have to make X into a ringed space whose structure sheaf
is a sheaf of k-valued functions. The construction is completely analogous to the affine
case discussed in section 2.1.

Definition 3.3.1. The ring
S(X)S(X)S(X) := k[x0, . . . ,xn]/I(X)

is called the homogeneous coordinate ring of X .



3. Projective varieties 41

Remark 3.3.2. In contrast to the affine case, the elements of S(X) do not define functions
on X , because the homogeneous coordinates are only determined up to a common scalar.
Rather, to get well-defined functions, we have to take quotients of two homogeneous poly-
nomials of the same degree d, because then a rescaling of the homogeneous coordinates by
a factor λ ∈ k\{0} gives a factor of λd in both the numerator and denominator, so that it
cancels out:

Definition 3.3.3. Let
S(X)(d) := { f (d) ; f ∈ S(X)}

be the degree-d part of S(X). Note that this is well-defined: if f ∈ I(X) then f (d) = 0 by
lemma 3.1.8. We define the field of rational functions to be

K(X)K(X)K(X) :=
{

f
g

; f ,g ∈ S(X)(d) and g 6= 0
}
.

By remark 3.3.2, the elements of K(X) give set-theoretic functions to the ground field k
wherever the denominator is non-zero. Now as in the affine case set

OX ,P :=
{

f
g
∈ K(X) ; g(P) 6= 0

}
and OX (U) :=

⋂
P∈U

OX ,P

for P ∈ X and U ⊂ X open. It is easily seen that this is a sheaf of k-valued functions.

Remark 3.3.4. In the same way as for affine varieties (see exercise 2.6.9) one can show
that the function field K(X) defined above agrees with the definition for general varieties.

Remark 3.3.5. Note that OX (X)= k, i. e. every regular function on all of X is constant. This
follows trivially from the description of K(X): if the function is to be defined everywhere
g must be a constant. But then f has to be a constant too as it must have the same degree
as g. A (slight) generalization of this will be proved in corollary 3.4.10.

Proposition 3.3.6. Let X be a projective variety. Then (X ,OX ) is a prevariety.

Proof. We need to find an open affine cover of X . Consider the open subset

X0 = {(a0 : · · · : an) ∈ X ; a0 6= 0}= X ∩An

(where An ⊂ Pn as in remark 3.1.4). If X = Z( f1, . . . , fr) with fi ∈ k[x0, . . . ,xn] homoge-
neous, set gi(x1, . . . ,xn)= fi(1,x1, . . . ,xn)∈ k[x1, . . . ,xn] and define Y = Z(g1, . . . ,gr)⊂An.
We claim that there is an isomorphism

F : X ∩An→ Y, (a0 : · · · : an) 7→
(

a1

a0
, . . . ,

an

a0

)
.

In fact, it is obvious that a set-theoretic inverse is given by

F−1 : Y → X ∩An, (a1, . . . ,an) 7→ (1 : a1 : · · · : an).

Moreover, F is a morphism because it pulls back a regular function on (an open subset of)
Y of the form

p(a1, . . . ,an)

q(a1, . . . ,an)
to

p( a1
a0
, . . . , an

a0
)

q( a1
a0
, . . . , an

a0
)
,

which is a regular function on X ∩An as it can be rewritten as a quotient of two homo-
geneous polynomials of the same degree (by canceling the fractions in the numerator and
denominator). In the same way, F−1 pulls back a regular function on (an open subset of)
X ∩An

p(a0, . . . ,an)

q(a0, . . . ,an)
to

p(1,a1, . . . ,an)

q(1,a1, . . . ,an)
,

which is a regular function on Y . So F is an isomorphism.



42 Andreas Gathmann

In the same way we can do this for the open sets Xi = {(x0 : · · · : xn) ∈ X ; xi 6= 0} for
i = 0, . . . ,n. As the xi cannot be simultaneously zero, it follows that the Xi form an affine
cover of X . So X is a prevariety. �

Remark 3.3.7. Following the proof of proposition 3.3.6, it is easy to see that our “new”
definition of P1 agrees with the “old” definition of example 2.4.5 (i) by glueing two affine
lines A1.

Remark 3.3.8. Proposition 3.3.6 implies that all our constructions and results for preva-
rieties apply to projective varieties as well. For example, we know what morphisms are,
and have defined products of projective varieties. We have also defined the field of rational
functions for prevarieties in exercise 2.6.9; it is easy to check that this definition agrees
with the one in definition 3.3.3.

Although this gives us the definition of morphisms and products, we would still have to
apply our glueing techniques to write down a morphism or a product. So we should find a
better description for morphisms and products involving projective varieties:

Lemma 3.3.9. Let X ⊂ Pn be a projective variety (or an open subset of a projective vari-
ety). Let f1, . . . , fm ∈ k[x0, . . . ,xn] be homogeneous polynomials of the same degree in the
homogeneous coordinates of Pn, and assume that for every P∈ X at least one of the fi does
not vanish at P. Then the fi define a morphism

f : X → Pm, P ∈ X 7→ ( f0(P) : · · · : fm(P)).

Proof. First of all note that f is well-defined set-theoretically: we have assumed that the
image point can never be (0 : · · · : 0); and if we rescale the homogeneous coordinates xi we
get

( f0(λx0 : · · · : λxn) : · · · : fm(λx0 : · · · : λxn))

= (λd f0(x0 : · · · : xn) : · · · : λ
d fm(x0 : · · · : xn))

= ( f0(x0 : · · · : xn) : · · · : fm(x0 : · · · : xn)),

where d is the common degree of the fi. To check that f is a morphism, we want to use
lemma 2.4.10, i. e. check the condition on an affine open cover. So let {Vi} be the affine
open cover of Pm with Vi = {(y0 : · · · : ym) ; yi 6= 0}, and let Ui = f−1(Vi). Then in the affine
coordinates on Vi the map f |Ui is given by the quotients of polynomials f j

fi
for j = 0, . . . ,m

with j 6= i, hence gives a morphism as fi(P) 6= 0 on Ui. So f is a morphism by lemma
2.4.10. �

Remark 3.3.10. It should be noted however that not every morphism between projective
varieties can be written in this form. The following example shows that this occurs already
in quite simple cases. For a more precise statement see lemma 7.5.14.

Example 3.3.11. By lemma 3.3.9, the map

f : P1 7→ P2, (s : t) 7→ (x : y : z) = (s2 : st : t2)

is a morphism (as we must have s 6= 0 or t 6= 0 for every point of P1, it follows that s2 6= 0
or t2 6= 0; hence the image point is always well-defined).

Let X = f (P1) be the image of f . We claim that X is a projective variety with ideal
I = (xz−y2). In fact, it is obvious that f (P1)⊂ Z(I). Conversely, let P = (x : y : z) ∈ Z(I).
As xz− y2 = 0 we must have x 6= 0 or z 6= 0; let us assume without loss of generality that
x 6= 0. Then (x : y) ∈ P1 is a point that maps to (x2 : xy : y2) = (x2 : xy : xz) = (x : y : z).

It is now easy to show that f : P1 → X is in fact an isomorphism: the inverse image
f−1 : X → P1 is given by

f−1(x : y : z) = (x : y) and f−1(x : y : z) = (y : z).
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Note that at least one of the two points (x : y) and (y : z) is always well-defined; and if they
are both defined they agree because of the equation xz= y2. By lemma 3.3.9 both equations
determine a morphism where they are well-defined; so by lemma 2.4.10 they glue to give
an inverse morphism f−1. Note that f−1 is a (quite simple) morphism between projective
varieties that cannot be written globally in the form of lemma 3.3.9.

Summarizing, we have shown that f is an isomorphism: the curve {xz = y2} ⊂ P2 is
isomorphic to P1. This example should be compared to exercise 2.6.1 and example 3.1.13.
It is a special case of the Veronese embedding of 3.4.11.

Finally, let us analyze the isomorphism f geometrically. Let Q = (1 : 0 : 0) ∈ X , and
let L⊂ P2 be the line {x = 0}. For any point P = (a : b : c) 6= Q there is a unique line PQ
through P and Q with equation yc = zb. This line has a unique intersection point PQ∩L
with the line L, namely (0 : b : c). If we identify L with P1 in the obvious way, we see that
the above geometric construction gives us exactly f−1(P) = PQ∩L. We say that f−1 is
the projection from Q to L.

f −1 P)(
L

Q

P

X

Example 3.3.12. Consider Pn with homogeneous coordinates x0, . . . ,xn, and Pm with ho-
mogeneous coordinates y0, . . . ,ym. We want to find an easy description of the product
Pn×Pm.

Let PN = P(n+1)(m+1)−1 be projective space with homogeneous coordinates zi, j, 0≤ i≤
n, 0≤ j≤m. There is an obviously well-defined set-theoretic map f : Pn×Pm→ PN given
by zi, j = xiy j.

Lemma 3.3.13. Let f : Pn×Pm→ PN be the set-theoretic map as above. Then:

(i) The image X = f (Pn×Pm) is a projective variety in PN , with ideal generated by
the homogeneous polynomials zi, jzi′, j′−zi, j′zi′, j for all 0≤ i, i′ ≤ n and 0≤ j, j′ ≤
m.

(ii) The map f :Pn×Pm→X is an isomorphism. In particular, Pn×Pm is a projective
variety.

(iii) The closed subsets of Pn×Pm are exactly those subsets that can be written as
the zero locus of polynomials in k[x0, . . . ,xn,y0, . . . ,ym] that are bihomogeneous
in the xi and yi.

The map f is called the Segre embedding.

Proof. (i): It is obvious that the points of f (Pn×Pm) satisfy the given equations. Con-
versely, let P be a point in PN with coordinates zi, j that satisfy the given equations. At least
one of these coordinates must be non-zero; we can assume without loss of generality that
it is z0,0. Let us pass to affine coordinates by setting z0,0 = 1. Then we have zi, j = zi,0z0, j;
so by setting xi = zi,0 and y j = z0, j we obtain a point of Pn×Pm that is mapped to P by f .

(ii): Continuing the above notation, let P ∈ f (Pn×Pm) be a point with z0,0 = 1. If
f (xi,y j) = P, it follows that x0 6= 0 and y0 6= 0, so we can assume x0 = 1 and y0 = 1 as the
xi and y j are only determined up to a common scalar. But then it follows that xi = zi,0 and
y j = z0, j; i. e. f is bijective.
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The same calculation shows that f and f−1 are given (locally in affine coordinates) by
polynomial maps; so f is an isomorphism.

(iii): It follows by the isomorphism of (ii) that any closed subset of Pn×Pm is the zero
locus of homogeneous polynomials in the zi, j, i. e. of bihomogeneous polynomials in the xi
and y j (of the same degree). Conversely, a zero locus of bihomogeneous polynomials can
always be rewritten as a zero locus of bihomogeneous polynomials of the same degree in
the xi and yi by remark 3.1.11. But such a polynomial is obviously a polynomial in the zi, j,
so it determines an algebraic set in X ∼= Pn×Pm. �

Example 3.3.14. By lemma 3.3.13, P1×P1 is (isomorphic to) the quadric surface

X = {(z0,0 : z0,1 : z1,0 : z1,1) ; z0,0z1,1 = z1,0z0,1} ⊂ P3.

by the isomorphism

P1×P1→ X , ((x0 : x1),(y0 : y1)) 7→ (x0y0 : x0y1 : x1y0 : x1y1).

In particular, the “lines” P1×P and P×P1 in P1×P1 where the first or second factor is
constant are mapped to lines in X ⊂ P3. We can see these two families of lines on the
quadric surface X :

PI 1

PI 1

P≅
3in IX

Corollary 3.3.15. Every projective variety is a variety.

Proof. We have already seen in proposition 3.3.6 that every projective variety is a preva-
riety, so by lemma 2.5.3 and lemma 2.5.4 it only remains to be shown that the diagonal
∆(Pn)⊂ Pn×Pn is closed. We can describe this diagonal as

∆(Pn) = {((x0 : · · · : xn),(y0 : · · · : yn)) ; xiy j− x jyi = 0 for all i, j},

because these equations mean exactly that the matrix(
x0 x1 · · · xn
y0 y1 · · · yn

)
has rank (at most 1), i. e. that (x0 : · · · : xn) = (y0 : · · · : yn).

In particular, it follows by lemma 3.3.13 (iii) that ∆(Pn)⊂ Pn×Pn is closed. �

3.4. The main theorem on projective varieties. The most important property of projec-
tive varieties is that they are compact in the classical topology (if the ground field is k =C).
We have seen this already for projective spaces in remark 3.1.5, and it then follows for pro-
jective algebraic sets as well as they are closed subsets (even in the classical topology) of
the compact projective spaces. Unfortunately, the standard definition of compactness does
not make sense at all in the Zariski topology, so we need to find an alternative description.

One property of compact sets is that they are mapped to compact sets under continu-
ous maps. In our language, this would mean that images of projective varieties under a
morphism should be closed. This is what we want to prove.
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Remark 3.4.1. Note first that this property definitely does not hold for affine varieties:
consider e. g. the affine variety X = {(x,y) ; xy = 1} ⊂ A2 and the projection morphism
f : X → A1, (x,y) 7→ x. The image of f is A1\{0}, which is not closed in A1. In fact, we
can see from example 3.1.13 why it is not closed: the “vertical point at infinity”, which
would map to x = 0 ∈ A1 and make the image closed, is missing in the affine variety X .

x

y

X

X( )f = A1 \{0}

To prove the above mentioned statement we start with a special case (from which the
general one will follow easily).

Theorem 3.4.2. The projection map π : Pn×Pm → Pn is closed, i. e. if X ⊂ Pn×Pm is
closed then so is π(X).

Proof. Let X ⊂ Pn×Pm be an algebraic set. By lemma 3.3.13 (iii) we can write X as the
zero locus of polynomials f1(x,y), . . . , fr(x,y) bihomogeneous in the coordinates xi of Pn

and yi of Pm (where we use the short-hand notation fi(x,y) for fi(x0, . . . ,xn,y0, . . . ,ym)).
By remark 3.1.11 we may assume that all fi have the same degree d in the yi.

Let P ∈ Pn be a fixed point. Then P ∈ π(X) if and only if the common zero locus of the
polynomials fi(P,y) in y is non-empty in Pm, which by proposition 3.2.5 is the case if and
only if

(y0, . . . ,ym)
s 6⊂ ( f1(P,y), . . . , fr(P,y)) (∗)

for all s≥ 0. As (∗) is obvious for s < d, it suffices to show that for any s≥ d, the set of all
P ∈ Pn satisfying (∗) is closed, as π(X) will then be the intersection of all these sets and
therefore closed as well.

Note that the ideal (y0, . . . ,ym)
s is generated by the

(m+s
m

)
monomials of degree s in the

yi, which we denote by Mi(y) (in any order). Hence (∗) is not satisfied if and only if there
are polynomials gi, j(y) such that Mi(y) = ∑ j gi, j(y) f j(P,y) for all i. As the Mi and f j are
homogeneous of degree s and d, respectively, this is the same as saying that such relations
exist with the gi, j homogeneous of degree s−d. But if we let Ni(y) be the collection of all
monomials in the yi of degree s−d, this is in turn equivalent to saying that the collection
of polynomials {Ni(y) f j(P,y) ; 1 ≤ i ≤

(m+s−d
m

)
,1 ≤ j ≤ r} generates the whole vector

space of polynomials of degree s. Writing the coefficients of these polynomials in a matrix
A = As(P), this amounts to saying that A has rank (at least)

(m+s
m

)
. Hence (∗) is satisfied

if and only if all minors of A of size
(m+s

m

)
vanish. But as the entries of the matrix A are

homogeneous polynomials in the coefficients of P, it follows that the set of all P satisfying
(∗) is closed. �

Remark 3.4.3. Let us look at theorem 3.4.2 from an algebraic viewpoint. We start with
some equations fi(x,y) and ask for the image of the projection map (x,y) 7→ x, which can
be written as

{x ; there is a y such that fi(x,y) = 0 for all i}.
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In other words, we are trying to eliminate the variables y from the system of equations
fi(x,y) = 0. The statement of the theorem is that the set of all such x can itself be written as
the solution set of some polynomial equations. This is sometimes called the main theorem
of elimination theory.

Corollary 3.4.4. The projection map π : Pn×Y → Y is closed for any variety Y .

Proof. Let us first show the statement for Y ⊂ Am being an affine variety. Then we can
regard Y as a subspace of Pm via the embedding Am ⊂ Pm (Y is neither open nor closed
in Pm, but that does not matter). Now if Z ⊂ Pn×Y is closed, let Z̃ ⊂ Pn×Pm be the
projective closure. By theorem 3.4.2, π(Z̃) is closed in Pm, where π is the projection
morphism. Therefore

π(Z) = π(Z̃∩ (Pn×Y )) = π(Z̃)∩Y
is closed in Y .

If Y is any variety we can cover it by affine open subsets. As the condition that a
subset is closed can be checked by restricting it to the elements of an open cover, the
statement follows from the corresponding one for the affine open patches that we have just
shown. �

Remark 3.4.5. Corollary 3.4.4 is in fact the property of Pn that captures the idea of com-
pactness (as we will see in corollary 3.4.7). Let us therefore give it a name: we say that a
variety X is complete if the projection map π : X ×Y → Y is closed for every variety Y .
(You can think of the name “complete” as coming from the geometric idea that it contains
all the “points at infinity” that were missing in affine varieties.) So corollary 3.4.4 says that
Pn is complete. Moreover, any projective variety Z ⊂ Pn is complete, because any closed
set in Z×Y is also closed in Pn×Y , so its image under the projection morphism to Y will
be closed as well.

Remark 3.4.6. We have just seen that every projective variety is complete. In fact, whereas
the converse of this statement is not true, it is quite hard to write down an example of a
complete variety that is not projective. We will certainly not meet such an example in the
near future. So for practical purposes you can usually assume that the terms “projective
variety” and “complete variety” are synonymous.

Corollary 3.4.7. Let f : X→Y be a morphism of varieties, and assume that X is complete.
Then the image f (X)⊂ Y is closed.

Proof. We factor f as f : X Γ→ X ×Y π→ Y , where Γ = (idX , f ) (the so-called graph mor-
phism), and π is the projection to Y .

We claim that Γ(X) = {(P, f (P)) ; P ∈ X} ⊂ X×Y is closed. To see this, note first that
the diagonal ∆(Y )⊂ Y ×Y is closed as Y is a variety. Now Γ(X) is just the inverse image
of ∆(Y ) under the morphism ( f , idY ) : X×Y → Y ×Y , and is therefore also closed.

As X is complete, it follows that f (X) = π(Γ(X)) is closed. �

Corollary 3.4.8. Let X ⊂ Pn be a projective variety that contains more than one point, and
let f ∈ k[x0, . . . ,xn] be a non-constant homogeneous polynomial. Then X ∩Z( f ) 6= /0.

Proof. Assume that the statement is false, i. e. that f is non-zero on all of X . Let P,Q ∈ X
be two distinct points of X and choose a homogeneous polynomial g ∈ k[x0, . . . ,xn] of the
same degree as f such that g(P) = 0 and g(Q) 6= 0. Let F : X → P1 be the morphism
defined by R 7→ ( f (R) : g(R)); this is well-defined as f is non-zero on X by assumption.

By corollary 3.4.7 the image F(X) is closed in P1. Moreover, F(X) is irreducible as X
is. Therefore, F(X) is either a point or all of P1. But by assumption (0 : 1) /∈ F(X), so
F(X) must be a single point. But this is a contradiction, as F(P) = ( f (P) : g(P)) = (1 : 0)
and F(Q) = ( f (Q) : g(Q)) 6= (1 : 0) by the choice of g. �
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Remark 3.4.9. Again this statement is false for affine varieties: consider e. g. X = {x =
0} ⊂ A2 and f = x− 1, then X ∩ Z( f ) = /0 although X is a line (and therefore contains
more than one point). This example worked because in A2 we can have parallel lines. In
P2 such lines would meet at infinity, so the intersection would be non-empty then.

Corollary 3.4.10. Every regular function on a complete variety is constant.

Proof. Let f : X → A1 be a regular function on a complete variety X . Consider f as a
morphism to P1 that does not assume the value ∞. In particular, f (X) ( P1, hence it is a
single point by corollary 3.4.7. �

Example 3.4.11. (This is a generalization of example 3.3.11 and exercise 3.5.2.) Let
fi(x0, . . . ,xn),0 ≤ i ≤ N =

(n+d
n

)
− 1 be the set of all monomials in k[x0, . . . ,xn] of degree

d, i. e. of the monomials of the form xi0
0 · · ·xin

n with i0 + · · ·+ in = d. Consider the map

F : Pn→ PN , (x0 : · · · : xn) 7→ ( f0 : · · · : fN).

By lemma 3.3.9 this is a morphism (note that the monomials xd
0 , . . . ,x

d
n , which cannot be

simultaneously zero, are among the fi). So by corollary 3.4.7 the image X = F(Pn) is a
projective variety.

We claim that F : X → F(X) is an isomorphism. All we have to do to prove this is to
find an inverse morphism. This is not hard: we can do this on an affine open cover, so
let us consider the open subset where x0 6= 0 (and therefore xd

0 6= 0). We can then pass to

affine coordinates and set x0 = 1. The inverse morphism is then given by xi =
xixd−1

0
xd

0
for

1≤ 1≤ n.
The morphism F is therefore an isomorphism and thus realizes Pn as a subvariety of PN .

This is usually called the degree-d Veronese embedding. Its importance lies in the fact
that degree-d polynomials in the coordinates of Pn are translated into linear polynomials
when viewing Pn as a subvariety of PN . An example of this application will be given in
corollary 3.4.12.

The easiest examples are the degree-d embeddings of P1, given by

P1→ Pd , (s : t) 7→ (sd : sd−1t : sd−2t2 : · · · : td).

The special cases d = 2 and d = 3 are considered in example 3.3.11 and exercise 3.5.2.
Note that by applying corollary 3.4.7 we could conclude that F(X) is a projective variety

without writing down its equations. Of course, in theory we could also write down the
equations, but this is quite messy in this case.

Corollary 3.4.12. Let X ⊂ Pn be a projective variety, and let f ∈ k[x0, . . . ,xn] be a non-
constant homogeneous polynomial. Then X\Z( f ) is an affine variety.

Proof. We know this already if f is a linear polynomial (see the proof of proposition 3.3.6).
But by applying a Veronese embedding of degree d, we can always assume this. �

3.5. Exercises.

Exercise 3.5.1. Let L1 and L2 be two disjoint lines in P3, and let P ∈ P3\(L1 ∪L2) be a
point. Show that there is a unique line L ⊂ P3 meeting L1, L2, and P (i. e. such that P ∈ L
and L∩Li 6= /0 for i = 1,2).

Exercise 3.5.2. Let C ⊂ P3 be the “twisted cubic curve” given by the parametrization

P1→ P3 (s : t) 7→ (x : y : z : w) = (s3 : s2t : st2 : t3).

Let P = (0 : 0 : 1 : 0) ∈ P3, and let H be the hyperplane defined by z = 0. Let ϕ be the
projection from P to H, i. e. the map associating to a point Q of C the intersection point of
the unique line through P and Q with H.
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(i) Show that ϕ is a morphism.
(ii) Determine the equation of the curve ϕ(C) in H ∼= P2.

(iii) Is ϕ : C→ ϕ(C) an isomorphism onto its image?

Exercise 3.5.3. Let I ⊂ k[x1, . . . ,xn] be an ideal. Define Ih to be the ideal generated by
{ f h ; f ∈ I} ⊂ k[x0, . . . ,xn], where

f h(x0, . . . ,xn) := xdeg( f )
0 · f

(
x1

x0
, . . . ,

xn

x0

)
denotes the homogenization of f with respect to x0. Show that:

(i) Ih is a homogeneous ideal.
(ii) Z(Ih)⊂Pn is the closure of Z(I)⊂An in Pn. We call Z(Ih) the projective closure

of Z(I).
(iii) Let I = ( f1, . . . , fk). Show by an example that Ih 6= ( f h

1 , . . . , f h
k ) in general. (Hint:

You may consider (again) the twisted cubic curve of exercise 3.5.2.)

Exercise 3.5.4. In this exercise we will make the space of all lines in Pn into a projective
variety.

Fix n≥ 1. We define a set-theoretic map

ϕ : {lines in Pn}→ PN

with N =
(n+1

2

)
− 1 as follows. For every line L ⊂ Pn choose two distinct points P =

(a0 : · · · : an) and Q = (b0 : · · · : bn) on L and define ϕ(L) to be the point in PN whose
homogeneous coordinates are the

(n+1
2

)
maximal minors of the matrix(

a0 · · · an
b0 · · · bn

)
,

in any fixed order. Show that:

(i) The map ϕ is well-defined and injective.
(ii) The image of ϕ is a projective variety that has a finite cover by affine spaces

A2(n−1) (in particular, its dimension is 2(n− 1)). It is called the Grassmannian
G(1,n). Hint: recall that by the Gaussian algorithm most matrices (what does this
mean?) are equivalent to one of the form(

1 0 a′2 · · · a′n
0 1 b′2 · · · b′n

)
for some a′i,b

′
i.

(iii) G(1,1) is a point, G(1,2)∼= P2, and G(1,3) is the zero locus of a quadratic equa-
tion in P5.

Exercise 3.5.5. Let V be the vector space over k of homogeneous degree-2 polynomials in
three variables x0,x1,x2, and let P(V )∼= P5 be its projectivization.

(i) Show that the space of conics in P2 can be identified with an open subset U
of P5. (One says that U is a “moduli space” for conics in P2 and that P5 is a
“compactified moduli space”.) What geometric objects can be associated to the
points in P5\U?

(ii) Show that it is a linear condition in P5 for the conics to pass through a given point
in P2. More precisely, if P ∈ P2 is a point, show that there is a linear subspace
L ⊂ P5 such that the conics passing through P are exactly those in U ∩L. What
happens in P5\U , i. e. what do the points in (P5\U)∩L correspond to?

(iii) Prove that there is a unique conic through any five given points in P2, as long as
no three of them lie on a line. What happens if three of them do lie on a line?
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Exercise 3.5.6. Show that an affine variety over C is never compact in the classical topol-
ogy unless it is a single point. (Hint: Given an affine variety X ⊂ An, show that the image
of X under the projection mapAn→A1 onto the first coordinate is either a point or an open
subset (in the Zariski topology) of A1. Conclude that an affine variety with more than one
point is never bounded, i. e. is never contained in a ball {(z1, . . . ,zn) ; |z1|2 + · · ·+ |zn|2 ≤
R2} ⊂ Cn, and therefore not compact.)

Exercise 3.5.7. Let G(1,n) be the Grassmannian of lines in Pn as in exercise 3.5.4. Show
that:

(i) The set {(L,P) ; P ∈ L} ⊂ G(1,n)×Pn is closed.
(ii) If Z ⊂ G(1,n) is any closed subset then the union of all lines L ⊂ Pn such that

L ∈ Z is closed in Pn.
(iii) Let X ,Y ⊂ Pn be disjoint projective varieties. Then the union of all lines in Pn

intersecting X and Y is a closed subset of Pn. It is called the join J(X ,Y ) of X
and Y .

Exercise 3.5.8. Recall that a conic is a curve in P2 that can be given as the zero locus of
an irreducible homogeneous polynomial f ∈ k[x0,x1,x2] of degree 2. Show that for any 5
given points P1, . . . ,P5 ∈ P2 in general position, there is a unique conic passing through all
the Pi. This means: there is a non-empty open subset U ⊂ P2× ·· ·×P2 such that there
is a unique conic through the Pi whenever (P1, . . . ,P5) ∈U . (Hint: By mapping a conic
{a0x2

0 +a1x2
1 +a2x2

2 +a3x0x1 +a4x0x2 +a5x1x2 = 0} to the point (a0 : · · · : a5) ∈ P5, you
can think of “the space of all conics” as an open subset of P5.)


