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2. FUNCTIONS, MORPHISMS, AND VARIETIES

IfX C A" is an affine variety, we define the function field K(X) of X to be the quotient
field of the coordinate ring A(X) = k[xy,...,x,]/I(X); this can be thought of as the
field of rational functions on X. For a point P € X the local ring Ox p is the subring
of K(X) of all functions that are regular (i. e. well-defined) at P, and for U C X an
open subset we let Ox (U) be the subring of K(X) of all functions that are regular at
every P € U. The ring of functions that are regular on all of X is precisely A(X).

Given two ringed spaces (X, Ox), (Y, Oy) with the property that their structure
sheaves are sheaves of k-valued functions, a set-theoretic map f : X — Y determines a
pull-back map f* from k-valued functions onY to k-valued functions on X by compo-
sition. We say that f is a morphism if f is continuous and f* Oy (U) C Ox (f~'(U))
for all open sets U in Y. In particular, this defines morphisms between affine vari-
eties and their open subsets. Morphisms X — Y between affine varieties correspond
exactly to k-algebra homomorphisms A(Y) — A(X).

In complete analogy to the theory of manifolds, we then define a prevariety to
be a ringed space (whose structure sheaf is a sheaf of k-valued functions and) that
is locally isomorphic to an affine variety. Correspondingly, there is a general way to
construct prevarieties and morphisms between them by taking affine varieties (resp.
morphisms between them) and patching them together. Affine varieties and their
open subsets are simple examples of prevarieties, but we also get more complicated
spaces as e. g. P! and the affine line with a doubled origin. A prevariety X is called
a variety if the diagonal A(X) C X x X is closed, i. e. if X does not contain “doubled
points”.

2.1. Functions on affine varieties. After having defined affine varieties, our next goal
must of course be to say what the maps between them should be. Let us first look at the
easiest case: “regular functions”, i.e. maps to the ground field k = A'. They should be
thought of as the analogue of continuous functions in topology, or differentiable functions
in real analysis, or holomorphic functions in complex analysis. Of course, in the case of
algebraic geometry we want to have algebraic functions, i.e. (quotients of) polynomial
functions.

Definition 2.1.1. Let X C A" be an affine variety. We call
A(X) :=klxq, ..., x]/1(X)
the coordinate ring of X.

Remark 2.1.2. The coordinate ring of X should be thought of as the ring of polynomial
functions on X. In fact, for any P € X an element f € A(X) determines a polynomial map
X — k (usually also denoted by f) given by f — f(P):

e this is well-defined, because all functions in 7(X) vanish on X by definition,
e if the function f : X — k is identically zero then f € I(X) by definition, so f =0
inA(X).

Note that /(X) is a prime ideal by lemma 1.3.4, so A(X) is an integral domain. Hence we
can make the following definition:

Definition 2.1.3. Let X C A" be an affine variety. The quotient field K(X) of A(X) is
called the field of rational functions on X.

Remark 2.1.4. Recall that the quotient field K of an integral domain R is defined to be the
set of pairs (f,g) with f,g € R, g # 0, modulo the equivalence relation

(f.8)~(f¢) < fg' —gf' =0.



2. Functions, morphisms, and varieties 19

An element (f,g) of K is usually written as g, and we think of it as the formal quotient
of two ring elements. Addition of two such formal quotients is defined in the same way as
you would expect to add fractions, namely

£ f fe+ef
S =T
g g g8

and similarly for subtraction, multiplication, and division. This makes K(X) into a field.
In the case where R = A(X) is the coordinate ring of an affine variety, we can therefore
think of elements of K(X) as being quotients of polynomial functions. We have to be very
careful with this interpretation though, see example 2.1.7 and lemma 2.1.8.

Now let us define what we want to mean by a regular function on an open subset U of
an affine variety X. This is more or less obvious: a regular function should be a rational
function that is well-defined at all points of U:

Definition 2.1.5. Let X C A" be an affine variety and let P € X be a point. We call

Op ={L: rgcat)mag(r) 20} ck()

the local ring of X at the point P. Obviously, this should be thought of as the rational
functions that are regular at P. If U C X is a non-empty open subset, we set

OX(U) = m Ox’p.

PeU
This is a subring of K(X). We call this the ring of regular functions on U.

Remark 2.1.6. The set my p := {f € A(X) ; f(P) = 0} of all functions that vanish at P
is an ideal in A(X). This is a maximal ideal, as A(X)/myx p = k, the isomorphism being
evaluation of the polynomial at the point P. With this definition, Oy p is just the localization
of the ring A(X) at the maximal ideal my p. We will explain in lemma 2.2.10 where the
name “local” (resp. “localization”) comes from.

Example 2.1.7. We have just defined regular functions on an open subset of an affine
variety X C A" to be rational functions, i.e. elements in the quotient field K(X), with
certain properties. This means that every such function can be written as the “quotient”
of two elements in A(X). It does notr mean however that we can always write a regular
function as the quotient of two polynomials in k[xj,...,n,]. Here is an example showing
this. Let X C A* be the variety defined by the equation xjx4 = xpx3, and let U C X be the
open subset of all points in X where x; # 0 or x4 # 0. The function % is defined at all
points of X where x; # 0, and the function ;—i is defined at points of X where x4 # 0. By
the equation of X, these two functions coincide where they are both defined; in other words

D5 ek

X2 X4
by remark 2.1.4. So this gives rise to a regular function on U. But there is no representation
of this function as a quotient of two polynomials in k[x;,x;,x3,x4] that works on all of U
— we have to use different representations at different points.

As we will usually want to write down regular functions as quotients of polynomials,
we should prove a precise statement how regular functions can be patched together from
different polynomial representations:

Lemma 2.1.8. The following definition of regular functions is equivalent to the one of
definition 2.1.5:

Let U be an open subset of an affine variety X C A". A set-theoretic map ¢ : U — k is
called regular at the point P € U if there is a neighborhood V of P in U such that there are
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polynomials f,g € klxy,...,x,| with g(Q) # 0 and ¢(Q) = %for all Q € V. It is called

regular on U if it is regular at every point in U.

Proof. Tt is obvious that an element of the ring of regular functions on U determines a
regular function in the sense of the lemma.

Conversely, let ¢ : U — A! be a regular function in the sense of the lemma. Let P € U

be any point, then there are polynomials f,g such that g(Q) # 0 and ¢(Q) = % for all

points Q in some neighborhood V of P. We claim that g € K(X) is the element in the ring
of regular functions that we seek.

In fact, all we have to show is that this element does not depend on the choices that
we made. So let P’ € U be another point (not necessarily distinct from P), and suppose

that there are polynomials f,g’ such that Jé = {;—: on some neighborhood V’ of P’. Then
fg =gf on VNV’ and hence on X as VNV’ is dense in X by remark 1.3.17. In other

o/

words, fg' —gf' € I(X), soitis zero in A(X), i.e. g = €K(X). O

Remark 2.1.9. An almost trivial but remarkable consequence of our definition of regular
functions is the following: let U C V be non-empty open subsets of an affine variety X. If
P1,¢2 : V — k are two regular functions on V that agree on U, then they agree on all of V.
This is obvious because the ring of regular functions (on any non-empty open subset) is a
subring of the function field K(X), so if two such regular functions agree this just means
that they are the same element of K(X). Of course, this is not surprising as open subsets
are always dense, so if we know a regular function on an open subset it is intuitively clear
that we know it almost everywhere anyway.

The interesting remark here is that the very same statement holds in complex analysis for
holomorphic functions as well (or more generally, in real analysis for analytic functions):
two holomorphic functions on a (connected) open subset U C C" must be the same if
they agree on any smaller open subset V C U. This is called the identity theorem for
holomorphic functions — in complex analysis this is a real theorem because there the
open subset V can be “very small”, so the statement that the extension to U is unique is
a lot more surprising than it is here in algebraic geometry. Still this is an example of a
theorem that is true in literally the same way in both algebraic and complex geometry,
although these two theories are quite different a priori.

Let us compute the rings Ox (U) explicitly in the cases where U is the complement of
the zero locus of just a single polynomial.

Proposition 2.1.10. Let X C A" be an affine variety. Let f € A(X) and Xy = {P €
X ; f(P) # 0}. (Open subsets of this form are called distinguished open subsets.) Then

Ox (X7) = A(X) = {]f L g €AX) andrzo}.

In particular, Ox (X) = A(X), i. e. any regular function on X is polynomial (take f = 1).

Proof. It is obvious that A(X) s C Ox(Xy), so let us prove the converse. Let ¢ € Ox(Xy) C
K(X). Let J ={g € A(X); gp € A(X)}. This is an ideal in A(X); we want to show that
f" € J for some r.

For any P € Xy we know that ¢ € Ox p, s0 ¢ = ’é with g # 0 in a neighborhood of P.
In particular g € J, so J contains an element not vanishing at P. This means that the zero
locus of the ideal I(X) +J C k[xy,...,x,] is contained in the set {P € X ; f(P) =0}, or
in other words that Z(I(X) +J) C Z(f). By proposition 1.2.9 (i) it follows that I(Z(f)) C
1(Z(I(X)+J)). So ff e I(Z(I(X)+J)), where f’ € k|xi,...,x,] is a representative of f.
Therefore /' € I(X) +J for some r by the Nullstellensatz 1.2.9 (iii), and so f" €J. [
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Remark 2.1.11. In the proof of proposition 2.1.10 we had to use the Nullstellensatz again.
In fact, the statement is false if the ground field is not algebraically closed, as you can see
from the example of the function )ﬁ that is regular on all of A!(RR), but not polynomial.

Example 2.1.12. Probably the easiest case of an open subset of an affine variety X that is
not of the form X as in proposition 2.1.10 is the complement U = C?\ {0} of the origin in
the affine plane. Let us compute Op2(U). By definition 2.1.5 any element ¢ € Oz (U) C
C(x,y) is globally the quotient ¢ = g of two polynomials f, g € C[x,y]. The condition that
we have to satisfy is that g(x,y) # 0 for all (x,y) # (0,0). We claim that this implies that
g is constant. (In fact, this follows intuitively from the fact that a single equation can cut
down the dimension of a space by only 1, so the zero locus of the polynomial g cannot
only be the origin in C2. But we have not proved this rigorously yet.)

We know already by the Nullstellensatz that there is no non-constant polynomial that
has empty zero locus in C?, so we can assume that g vanishes on (0,0). If we write g as

806) = fol@) + filx) -y + f2(x) -V - 4 ful2) 5,
this means that fy(0) = 0. We claim that fo(x) must be of the form x™ for some m. In fact:

o if fj is the zero polynomial, then g(x,y) contains y as a factor and hence the whole
X-axis in its zero locus,

e if fy contains more than one monomial, f has a zero xo # 0, and hence g(xp,0) =
0.

So g(x,y) is of the form

86y) ="+ fi(x) -y + fo(x) -V 4 fulx) Y
Now set y = € for some small €. As g(x,0) =x™ and all f; are continuous, the restriction

g(x,€) cannot be the zero or a constant polynomial. Hence g(x,€) vanishes for some x,
which is a contradiction.

So we see that we cannot have any denominators, i.e. Og2 (U) = C[x,y]. In other words,
a regular function on C*\{0} is always regular on all of C?. This is another example of
a statement that is known from complex analysis for holomorphic functions, known as the
removable singularity theorem.

2.2. Sheaves. We have seen in lemma 2.1.8 that regular functions on affine varieties are
defined in terms of local properties: they are set-theoretic functions that can locally be writ-
ten as quotients of polynomials. Local constructions of function-like objects occur in many
places in algebraic geometry (and also in many other “topological” fields of mathematics),
so we should formalize the idea of such objects. This will also give us an “automatic”
definition of morphisms between affine varieties in section 2.3.

Definition 2.2.1. A presheaf F of rings on a topological space X consists of the data:

e for every open set U C X aring ¥ (U) (think of this as the ring of functions on
U)’

o for every inclusion U C V of open sets in X a ring homomorphism py g : F(V) —
F(U) called the restriction map (think of this as the usual restriction of functions
to a subset),

such that
o F(0)=0,
e py .y is the identity map for all U,
e for any inclusion U C V C W of open sets in X we have py gy opwy = pw,u.

The elements of F (U) are usually called the sections of F over U, and the restriction
maps py,y are written as f — f|y.
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A presheaf ¥ of rings is called a sheaf of rings if it satisfies the following glueing
property: if U C X is an open set, {U;} an open cover of U and f; € F (U;) sections for all i
such that fi[v,nu; = filunu; for alli, j, then there is a unique f € ¥ (U) such that f|y, = f;
for all i.

Remark 2.2.2. In the same way one can define (pre-)sheaves of Abelian groups / k-algebras
etc., by requiring that all 7 (U) are objects and all py 7 are morphisms in the corresponding
category.

Example 2.2.3. If X C A" is an affine variety, then the rings Ox (U) of regular functions
on open subsets of X (with the obvious restriction maps Ox (V) — Ox (U) for U C V) form
a sheaf of rings Oy, the sheaf of regular functions or structure sheaf on X. In fact, all
defining properties of presheaves are obvious, and the glueing property of sheaves is easily
seen from the description of regular functions in lemma 2.1.8.

Example 2.2.4. Here are some examples from other fields of mathematics: Let X = R”,
and for any open subset U C X let F (U) be the ring of continuous functions on U. Together
with the obvious restriction maps, these rings ¥ (U) form a sheaf, the sheaf of continuous
functions. In the same way we can define the sheaf of k times differentiable functions,
analytic functions, holomorphic functions on C”, and so on. The same definitions can be
applied if X is a real or complex manifold instead of just R” or C".

In all these examples, the sheaves just defined “are” precisely the functions that are con-
sidered to be morphisms in the corresponding category (for example, in complex analysis
the morphisms are just the holomorphic maps). This is usually expressed in the follow-
ing way: a pair (X, ) where X is a topological space and ¥ is a sheaf of rings on X is
called a ringed space. The sheaf ¥ is then called the structure sheaf of this ringed space
and usually written Ox. Hence we have just given affine varieties the structure of a ringed
space. (Although being general, this terminology will usually only be applied if F actually
has an interpretation as the space of functions that are considered to be morphisms in the
corresponding category.)

Remark 2.2.5. Intuitively speaking, any “function-like” object forms a presheaf; it is a
sheaf if the conditions imposed on the “functions” are local. Here is an example illustrating
this fact. Let X = R be the real line. For U C X open and non-empty let F (U) be the ring
of constant (real-valued) functions on U, i.e. F(U) =R for all U. Let pyy for U C V
be the obvious restriction maps. Then ¥ is obviously a presheaf, but not a sheaf. This is
because being constant is not a local property; it means that f(P) = f(Q) for all P and
Q that are possibly quite far away. For example, let U = (0,1) U (2,3). Then U has an
open cover U = U; UU, with U; = (0,1) and U, = (2,3). Let f; : U; — R be the constant
function 0, and let f, : U — R be the constant function 1. Then f; and f; trivially agree
on the overlap U; N U, = 0, but there is no constant function on U that restricts to both f;
and f, on U; and U,, respectively. There is however a uniquely defined locally constant
function on U with that property. In fact, it is easy to see that the locally constant functions
on X do form a sheaf.

Remark 2.2.6. If F is a sheaf on X and U C X is an open subset, then one defines the
restriction of ¥ to U, denoted F |y, by (F|v)(V) = F(V) for all open subsets V C U.
Obviously, this is again a sheaf.

Finally, let us see how the local rings of an affine variety appear in the language of
sheaves.

Definition 2.2.7. Let X be a topological space, P € X, and ¥ a (pre-)sheaf on X. Consider
pairs (U, @) where U is an open neighborhood of P and ¢ € F (U) a section of F over U.
We call two such pairs (U, ) and (U’, ¢') equivalent if there is an open neighborhood V of
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P with V. C UNU' such that 9|y = @'|y. (Note that this is in fact an equivalence relation.)
The set of all such pairs modulo this equivalence relation is called the stalk ¥p of F at P,
its elements are called germs of ¥ .

Remark 2.2.8. If F is a (pre-)sheaf of rings (or k-algebras, Abelian groups, etc.) then the
stalks of # are rings (or k-algebras, Abelian groups, etc.).

Remark 2.2.9. The interpretation of the stalk of a sheaf is obviously that its elements are
sections of F that are defined in an (arbitrarily small) neighborhood around P. Hence e. g.
on the real line the germ of a differentiable function at a point P allows you to compute the
derivative of this function at P, but none of the actual values of the function at any point
besides P. On the other hand, we have seen in remark 2.1.9 that holomorphic functions
on a (connected) complex manifold are already determined by their values on any open
set, so germs of holomorphic functions carry “much more information” than germs of
differentiable functions. In algebraic geometry, this is similar: it is already quite obvious
that germs of regular functions must carry much information, as the open subsets in the
Zariski topology are so big. We will now show that the stalk of Ox at a point P is exactly
the local ring Ox p, which finally gives a good motivation for the name “local ring”.

Lemma 2.2.10. Let X be an affine variety and P € X. The stalk of Ox at P is Ox p.

Proof. Recall that Ox (U) C Ox p C K(X) for all P € U by definition.

Therefore, if we are given a pair (U, @) with P € U and ¢ € Ox (U ), we see that ¢ € Ox p
determines an element in the local ring. If we have another equivalent pair (U’,¢’), then
¢ and ¢’ agree on some V with P € V. C U NU’ by definition, so they determine the same
element in Ox (V) and hence in Ox p.

Conversely, if @ € Oy p is an element in the local ring, we can write it as ¢ = g with
polynomials f,g such that g(P) # 0. Then there must be a neighborhood U of P on which
g is non-zero, and therefore the (U, @) defines an element in the stalk of Oy at P. t

2.3. Morphisms between affine varieties. Having given the structure of ringed spaces to
affine varieties, there is a natural way to define morphisms between them. In this section we
will allow ourselves to view morphisms as set-theoretic maps on the underlying topological
spaces with additional properties (see lemma 2.1.8).

Definition 2.3.1. Let (X, Ox) and (Y, Oy ) be ringed spaces whose structure sheaves Ox and
Oy are sheaves of k-valued functions (in the case we are considering right now X and Y
will be affine varieties or open subsets of affine varieties). Let f : X — Y be a set-theoretic
map.

(i) If : U — k is a k-valued (set-theoretic) function on an open subset U of Y, the
composition @o f : f~1(U) — k is again a set-theoretic function. It is denoted by
f¥¢ and is called the pull-back of ¢.

(i) The map f is called a morphism if it is continuous, and if it pulls back regular
functions to regular functions, i. . if f* Oy (U) C Ox(f~!(U)) forallopen U C Y.

Remark 2.3.2. Recall that a function f : X — Y between topological spaces is called con-
tinuous if inverse images of open subsets are always open. In the above definition (ii), the
requirement that f be continuous is therefore necessary to formulate the second condition,
as it ensures that f~!(U) is open, so that Oy (f~!(U)) is well-defined.

Remark 2.3.3. In our context of algebraic geometry Oy and Oy will always be the sheaves
of regular maps constructed in definition 2.1.5. But in fact, this definition of morphisms is
used in many other categories as well, e. g. one can say that a set-theoretic map between
complex manifolds is holomorphic if it pulls back holomorphic functions to holomorphic
functions. In fact, it is almost the general definition of morphisms between ringed spaces —
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the only additional twist in the general case is that if f: X — Y is a continuous map between
arbitrary ringed spaces (X, Ox) and (Y, Oy), there is no a priori definition of the pull-back
map Oy (U) — Ox(f~'(U)). In the case above we solved this problem by applying the set-
theoretic viewpoint that gave us a notion of pull-back in our special case. In more general
cases (e. g. for schemes that we will discuss later in section 5) one will have to include
these pull-back maps in the data needed to define a morphism.

We now want to show that for affine varieties the situation is a lot easier: we actually do
not have to deal with open subsets, but it suffices to check the pull-back property on global
functions only:

Lemma 2.34. Let f: X — Y be a continuous map between affine varieties. Then the
following are equivalent:

(1) f is a morphism (i. e. f pulls back regular functions on open subsets to regular
functions on open subsets).
(ii) For every ¢ € Oy(Y) we have f*@ € Ox(X), i.e. f pulls back global regular
functions to global regular functions.
(iii) For every P € X and every @ € Oy pp) we have f*@ € Ox p, i.e. f pulls back
germs of regular functions to germs of regular functions.

Proof. (i) = (ii) is trivial, and (iii) = (i) follows immediately from the definition of Oy (U)
and Ox (f~'(U)) as intersections of local rings. To prove (ii) = (iii) let ¢ € Oy, 7(p) be
the germ of a regular function on Y. We write ¢ = £ with g,h € A(Y) = Oy(Y) and
h(f(P)) #0. By (ii), f*g and f*h are global regular functions in A(X) = Ox(X), hence

ffo= % € Ox p, since we have h(f(P)) # 0. O

Example 2.3.5. Let X = A! be the affine line with coordinate x, and let ¥ = A! be the
affine line with coordinate y. Consider the set-theoretic map

fiX—=Y, x—y=x.

We claim that this is a morphism. In fact, by lemma 2.3.4 (ii) we just have to show that f
pulls back polynomials in k[y] to polynomials in k[x]. But this is obvious, as the pull-back
of a polynomial @(y) € k[y] is just @(x?) (i.e. we substitute x> for y in ¢). This is still a
polynomial, so it is in k[x].

Example 2.3.6. For the very same reason, every polynomial map is a morphism. More
precisely, let X C A™ and Y C A" be affine varieties, and let f : X — Y be a polynomial
map, i. e. a map that can be written as f(P) = (f1(P),..., fu(P)) with f; € k[x|,...,xy]. As
f then pulls back polynomials to polynomials, we conclude first of all that f is continuous.
Moreover, it then follows from lemma 2.3.4 (ii) that f is a morphism. In fact, we will show
now that all morphisms between affine varieties are of this form.

Lemma 2.3.7. Let X C A" and Y C A™ be affine varieties. There is a one-to-one cor-
respondence between morphisms f : X — Y and k-algebra homomorphisms f*: A(Y) —
A(X).

Proof. Any morphism f : X — Y determines a k-algebra homomorphism f* : Oy(Y) =
A(Y) — Ox(X) = A(X) by definition. Conversely, if

g Kyt eyl /1Y) = Klxt, . 5] [1(X)

is any k-algebra homomorphism then it determines a polynomial map f = (fi,..., fm) :
X — Y as in example 2.3.6 by f; = g(y;), and hence a morphism. O
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Example 2.3.8. Of course, an isomorphism is defined to be a morphism f : X — Y that
has an inverse (i. e. a morphism such that there is a morphism g : Y — X with go f =idy
and fog =idy). A warning is in place here that an isomorphism of affine varieties is
not the same as a bijective morphism (in contrast e. g. to the case of vector spaces). For
example, let X C A? be the curve given by the equation x*> = y*, and consider the map

fA' X, e x=>y=1).

xZ=y
Al f \/

This is a morphism as it is given by polynomials, and it is bijective as the inverse is given
by

L () £ 0,0),
0 if (x,y) =(0,0).

But if f was an isomorphism, the corresponding k-algebra homomorphism

f_1 (X = Al (x7y)r—>{

k[x,y]/(x2 —y3) — k[t], x— > and y — 12

would have to be an isomorphism by lemma 2.3.7. This is obviously not the case, as the
image of this algebra homomorphism contains no linear polynomials.

Example 2.3.9. As an application of morphisms, let us consider products of affine va-
rieties. Let X C A" and Y C A™ be affine varieties with ideals I(X) C k[xi,...,x,] and
I(Y) Ck[y1,...,Ym)- As usual, we define the product X x Y of X and Y to be the set

XxY={(PQ)eA"xA";PeXandQ €Y} C A" x A" = A",
Obviously, this is an algebraic set in A" with ideal
IXXY)=IX)+1(Y) Cklx1,. . sXn, Y15, Ym)

where we consider k[xj,...,x,] and k[yj,...,ym] as subalgebras of k[xy,...,%u, V1, Ym)
in the obvious way. Let us show that it is in fact a variety, i. e. irreducible:

Proposition 2.3.10. [fX and Y are affine varieties, then so is X x Y.

Proof. For simplicity, let us just write x for the collection of the x;, and y for the collection
of the y;. By the above discussion it only remains to show that /(X x Y) is prime. So let
f, & € k[x,y] be polynomial functions such that fg € I(X x Y); we have to show that either
forgvanishesonallof X X Y,i.e. that X xY C Z(f) or X xY C Z(g).

So let us assume that X x Y ¢ Z(f), i.e. there is a point (P,Q) € X x Y\Z(f) (where
P e X and Q €7Y). Denote by f(-,Q) € k[x] the polynomial obtained from f € k[x,y] by
plugging in the coordinates of Q for y. For all P’ € X\Z(f(-,Q)) (e. g. for P’ = P) we must
have

Y CZ(f(P',) 8(P',) = Z(f(P',) UZ(g(P',")).

AsY is irreducible and Y ¢ Z(f(P’,-)) by the choice of P, it follows that Y C Z(g(P',-)).

This is true for all P’ € X\Z(f(-,Q)), so we conclude that (X\Z(f(-,Q)) XY C Z(g).
But as Z(g) is closed, it must in fact contain the closure of (X\Z(f(-,Q)) xY as well,
which is just X x ¥ as X is irreducible and X\Z(f(-,Q)) a non-empty open subset of X
(see remark 1.3.17). Il

The obvious projection maps
nx:XxY =X, (P,Q)—P and 7y:XxY =Y, (PQ)—Q

are given by (trivial) polynomial maps and are therefore morphisms. The important main
property of the product X x Y is the following:
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Lemma 2.3.11. Let X and Y be affine varieties. Then the product X X Y satisfies the
following universal property: for every affine variety Z and morphisms [ : Z — X and
g:Z —Y, there is a unique morphism h: Z — X XY such that f =nxohand g =Ty oh,
i. e. such that the following diagram commutes:

In other words, giving a morphism Z — X XY “is the same” as giving two morphisms
Z—~XandZ —Y.

Proof. Let A be the coordinate ring of Z. Then by lemma 2.3.7 the morphism f:Z — X is
given by a k-algebra homomorphism f : k[xy,...,x,]/I(X) — A. This in turn is determined
by giving the images f; := f(x;) € A of the generators x;, satisfying the relations of 7 (i.e.
F(fi,....fn) =0forall F(xy,...,x,) € I(X)). The same is true for g, which is determined
by the images g; := g(y;) € A.

Now it is obvious that the elements f; and g; determine a k-algebra homomorphism

k[xt, oy Xn, Y1y vm] /X)) +1(Y)) — A,
which determines a morphism /2 : Z — X x Y by lemma 2.3.7.

To show uniqueness, just note that the relations f =y ok and g = Ty o & imply imme-
diately that 2 must be given set-theoretically by A(P) = (f(P),g(P)) forall P € Z. O

Remark 2.3.12. It is easy to see that the property of lemma 2.3.11 determines the product
X x Y uniquely up to isomorphism. It is therefore often taken to be the defining property
for products.

Remark 2.3.13. If you have heard about tensor products before, you will have noticed that
the coordinate ring of X x Y is just the tensor product A(X) ® A(Y) of the coordinate rings
of the factors (where the tensor product is taken as k-algebras). See also section 5.4 for
more details.

Remark 2.3.14. Lemma 2.3.7 allows us to associate an affine variety up to isomorphism
to any finitely generated k-algebra that is a domain: if A is such an algebra, let xy,...,x,
be generators of A, so that A = k[xj,...,x,]/I for some ideal I. Let X be the affine variety
in A" defined by the ideal /; by the lemma it is defined up to isomorphism. Therefore we
should make a (very minor) redefinition of the term “affine variety” to allow for objects that
are isomorphic to an affine variety in the old sense, but that do not come with an intrinsic
description as the zero locus of some polynomials in affine space:

Definition 2.3.15. A ringed space (X, Ox) is called an affine variety over k if

(i) X is irreducible,
(i) Oy is a sheaf of k-valued functions,
(iii) X is isomorphic to an affine variety in the sense of definition 1.3.1.

Here is an example of an affine variety in this new sense although it is not a priori given
as the zero locus of some polynomials in affine space:

Lemma 2.3.16. Let X be an affine variety and f € A(X), and let Xy = X\Z(f) be a
distinguished open subset as in proposition 2.1.10. Then the ringed space (Xy, Ox|x,) is
isomorphic to an affine variety with coordinate ring A(X) .
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Proof. Let X C A" be an affine variety, and let f' € k[xy,...,x,] be a representative of f.
Let J C k[x1,...,x,,] be the ideal generated by /(X) and the function 1 —zf’. We claim
that the ringed space (X, Ox|x,) is isomorphic to the affine variety

ZJ)={(P\);PcXand A= ﬁ} c AL,

Consider the projection map = : Z(J) — X given by ©(P,A) = P. This is a morphism with

image X and inverse morphism n~!(P) = (P, erﬂ’ hence 7 is an isomorphism. It is

obvious that A(Z(J)) = A(X) . O

Remark 2.3.17. So we have just shown that even open subsets of affine varieties are them-
selves affine varieties, provided that the open subset is the complement of the zero locus of
a single polynomial equation.

Example 2.1.12 shows however that not all open subsets of affine varieties are them-
selves isomorphic to affine varieties: if U C C?\{0} we have seen that Oy (U) = k[x,y]. So
if U was an affine variety, its coordinate ring must be k[x, y], which is the same as the coor-
dinate ring of C2. By lemma 2.3.7 this means that U and C? would have to be isomorphic,
with the isomorphism given by the identity map. Obviously, this is not true. Hence U is
not an affine variety. It can however be covered by two open subsets {x # 0} and {y # 0}
which are both affine by lemma 2.3.16. This leads us to the idea of patching affine varieties
together, which we will do in the next section.

2.4. Prevarieties. Now we want to extend our category of objects to more general things
than just affine varieties. Remark 2.3.17 showed us that not all open subsets of affine va-
rieties are themselves isomorphic to affine varieties. But note that every open subset of
an affine variety can be written as a finite union of distinguished open subsets (as this is
equivalent to the statement that every closed subset of an affine variety is the zero locus
of finitely many polynomials). Hence any such open subset can be covered by affine va-
rieties. This leads us to the idea that we should study objects that are not affine varieties
themselves, but rather can be covered by (finitely many) affine varieties. Note that the
following definition is completely parallel to the definition 2.3.15 of affine varieties (in the
new sense).

Definition 2.4.1. A prevariety is a ringed space (X, Ox) such that

(i) X isirreducible,
(i) Oy is a sheaf of k-valued functions,
(iil) there is a finite open cover {U;} of X such that (U;, Ox|y,) is an affine variety for
all i.

As before, a morphism of prevarieties is just a morphism as ringed spaces (see definition
2.3.1).

An open subset U C X of a prevariety such that (U, Ox|y) is isomorphic to an affine
variety is called an affine open set.

Example 2.4.2. Affine varieties and open subsets of affine varieties are prevarieties (the
irreducibility of open subsets follows from exercise 1.4.6).

Remark 2.4.3. The above definition is completely analogous to the definition of manifolds.
Recall how manifolds are defined: first you look at open subsets of R” that are supposed to
form the patches of your space, and then you define a manifold to be a topological space
that looks locally like these patches. In the algebraic case now we can say that the affine
varieties form the basic patches of the spaces that we want to consider, and that e. g. open
subsets of affine varieties are spaces that look locally like affine varieties.
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As we defined a prevariety to be a space that can be covered by affine opens, the most
general way to construct prevarieties is of course to take some affine varieties (or prevari-
eties that we have already constructed) and patch them together:

Example 2.4.4. Let X;,X, be prevarieties, let U; C X| and U, C X, be non-empty open
subsets, and let f : (Ui, Ox, |u,) = (Uz, Ox,|u,) be an isomorphism. Then we can define a
prevariety X, obtained by glueing X; and X, along U; and U, via the isomorphism f:

e As a set, the space X is just the disjoint union X; U X, modulo the equivalence
relation P ~ f(P) for all P € Uj.

e Asatopological space, we endow X with the so-called quotient topology induced
by the above equivalence relation, i.e. we say that a subset U C X is open if
and only if il_l(U) C X1 and iz_l(U) C X are both open, with i; : X; — X and
ip : Xo — X being the obvious inclusion maps.

e As aringed space, we define the structure sheaf Ox by

Ox(U) = {(1,92) : 91 € Ox, (i ' (U)), 92 € Ox, (i ' (V)),
@1 = ¢, on the overlap (i.e. f*((p2|i£1(U)mU2) =@ ‘il—l(U)mUI)}.

It is easy to check that this defines a sheaf of k-valued functions on X and that X is irre-
ducible. Of course, every point of X has an affine neighborhood, so X is in fact a prevariety.

Example 2.4.5. As an example of the above glueing construction, let X; =X, = Al, U, =
Uy = A"\ {0}.

e Let f: Uy — U, be the isomorphism x — % The space X can be thought of as
AU {eo}: of course the affine line X; = A! C X sits in X. The complement
X\Xi is a single point that corresponds to the zero point in X, = A! and hence
to “o0 = %” in the coordinate of X;. In the case k = C, the space X is just the

Riemann sphere C..

e

We denote this space by P!. (This is a special case of a projective space; see
section 3.1 and remark 3.3.7 for more details.)
e Let f: U — U, be the identity map. Then the space X obtained by glueing along
f is “the affine line with the zero point doubled”:
X, glue

LI N N A B N . X

Obviously this is a somewhat weird space. Speaking in classical terms (and think-
ing of the complex numbers), if we have a sequence of points tending to the zero,
this sequence would have two possible limits, namely the two zero points. Usu-
ally we want to exclude such spaces from the objects we consider. In the theory
of manifolds, this is simply done by requiring that a manifold satisfies the so-
called Hausdorff property, i.e. that every two distinct points have disjoint open
neighborhoods. This is obviously not satisfied for our space X. But the analogous
definition does not make sense in the Zariski topology, as non-empty open subsets
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are never disjoint. Hence we need a different characterization of the geometric
concept of “doubled points”. We will do this in section 2.5.

Example 2.4.6. Let X be the complex affine curve
X={(xy)eC®;y¥=(x—1)(x—2)-(x—2n)}.

We have already seen in example 0.1.1 that X can (and should) be “compactified” by adding
two points at infinity, corresponding to the limit x — oo and the two possible values for y.
Let us now construct this compactified space rigorously as a prevariety.

To be able to add a limit point “x = «” to our space, let us make a coordinate change
= %, so that the equation of the curve becomes
YR = (1 —%)(1—2%)--- (1 —2n%).
If we make an additional coordinate change j = )%, this becomes
7 =(1—%)(1-2%) - (1—2n%).

In these coordinates we can add our two points at infinity, as they now correspond to ¥ =0
(and therefore y = £1).

Summarizing, our “compactified curve” of example 0.1.1 is just the prevariety obtained
by glueing the two affine varieties
X={(x,y)€C?;y?=(x—1)(x—2)---(x—2n)}
and X ={(%5)eC?®;5?=(1-%)(1-2%)---(1—2n%)}

along the isomorphism

fUT, me@w:(ly)

x’ xn

FO U (79) e (xy) = (L ’ ) ,

X X"

where U = {x #0} C X and U = {¥ # 0} C X.

Of course one can also glue together more than two prevarieties. As the construction
is the same as in the case above, we will just give the statement and leave its proof as an
exercise:

Lemma 2.4.7. Let Xy,...,X, be prevarieties, and let U; ; C X; be non-empty open subsets
fori,j=1,...,r. Let f; j : U; j = U; ; be isomorphisms such that

0 fij=fi

(i) fix = fjko fi,j where defined.
Then there is a prevariety X, obtained by glueing the X; along the morphisms f; ; as in
example 2.4.4 (see below).

Remark 2.4.8. The prevariety X in the lemma 2.4.7 can be described as follows:

e As a set, X is the disjoint union of the X;, modulo the equivalence relation P ~
fi,j(P) forall P € U; ;.

e To define X as a topological space, we say that a subset ¥ C X is closed if and
only if all restrictions ¥ NX; are closed.

e A regular function on an open set U C X is a collection of regular functions
@i € Ox,(X;NU) that agree on the overlaps.
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Condition (ii) of the lemma gives a compatibility condition for triple overlaps: consider
three patches X;, X; , X; that have a common intersection. Then we want to identify every
point P € U; j with f; ;(P) € Ujx, and the point f; ;(P) with f; ¢(f; j(P)) (if it lies in Uj z).
So the glueing map fix must map P to the same point f;,(f; j(P)) to get a consistent
glueing. This is illustrated in the following picture:

Let us now consider some examples of morphisms between prevarieties.

Example 2.4.9. Let f : P! — A! be a morphism. We claim that f must be constant.

In fact, consider the restriction f|,1 of f to the open affine subset A! C P!. By definition
the restriction of a morphism is again a morphism, so f|,1 must be of the form x — y = p(x)
for some polynomial p € k[x]. Now consider the second patch of P! with coordinate % = %
Applying this coordinate change, we see that f |]P1\ {0} is given by X — p(%) But this must
be a morphism too, i.e. p(%) must be a polynomial in ¥. This is only true if p is a constant.

In the same way as prevarieties can be glued, we can patch together morphisms too. Of
course, the statement is essentially that we can check the property of being a morphism on
affine open covers:

Lemma 2.4.10. Let X,Y be prevarieties and let f : X — Y be a set-theoretic map. Let
{Uy,...,U.} be an open cover of X and {V,...,V,} an affine open cover of Y such that
fU;) CViand (fly,)* Oy (Vi) C Ox(U;). Then f is a morphism.

Proof. We may assume that the U; are affine, as otherwise we can replace the U; by a set
of affines that cover U;. Consider the restrictions f; : U; — V;. The homomorphism f;* :
Oy (Vi) =A(V;) = Ox(U;) = A(U;) is induced by some morphism U; — V; by lemma 2.3.7
which is easily seen to coincide with f;. In particular, the f; are continuous, and therefore
so is f. It remains to show that f* takes sections of Oy to sections of Ox. Butif V C Y is
open and @ € Oy(V), then f*@ is at least a section of Oy on the sets f~!(V)NU;. Since
Oy is a sheaf and the U; cover X, these sections glue to give a section in Ox (f~!(V)). O

Example 2.4.11. Let f: A! — A! x+ y = f(x) be a morphism given by a polynomial f €
k[x]. We claim that there is a unique extension morphism f : P! — P! such that f|1 = f.
We can assume that f = Y, a;x' is not constant, as otherwise the result is trivial. It is then
obvious that the extension should be given by f(e0) = co. Let us check that this defines in
fact a morphism.

We want to apply lemma 2.4.10. Consider the standard open affine cover of the domain
P! by the two affine lines V; = P'\{e} and V, = P'\{0}. Then U; := f~!(V;) = A!,
and f|,1 = f is a morphism. On the other hand, let U, := f~!(V,)\{0}. Consider the
coordinates ¥ = % and y = )l on U, and V5, respectively. In these coordinates, the map f is
given by

x‘n

n n—i ;
Y aix

<
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in particular ¥ = 0 maps to y = 0. So by defining (o) = o0, we get a morphism f : P! — P!
that extends f by lemma 2.4.10.

2.5. Varieties. Recall example 2.4.5 (ii) where we constructed a prevariety that was “not
Hausdorff” in the classical sense: take two copies of the affine line A' and glue them
together on the open set A\ {0} along the identity map. The prevariety X thus obtained is
the “affine line with the origin doubled”; its strange property is that even in the classical
topology (for k = C) the two origins do not have disjoint neighborhoods. We will now
define an algebro-geometric analogue of the Hausdorff property and say that a prevariety
is a variety if it has this property.

Definition 2.5.1. Let X be a prevariety. We say that X is a variety if for every prevariety
Y and every two morphisms f1,f2:Y — X, theset {P €Y ; fi(P) = f2(P)}isclosedinY.

Remark 2.5.2. Let X be the affine line with the origin doubled. Then X is not a variety —
if we take ¥ = A! and let fi, /> : ¥ — X be the two obvious inclusions that map the origin
in Y to the two different origins in X, then f; and f> agree on A\ {0}, which is not closed
in Al

On the other hand, if X has the Hausdorff property that we want to characterize, then
two morphisms Y — X that agree on an open subset of ¥ should also agree on Y.

One can make this definition somewhat easier and eliminate the need for an arbitrary
second prevariety Y. To do so note that we can define products of prevarieties in the same
way as we have defined products of affine varieties (see example 2.3.9 and exercise 2.6.13).
For any prevariety X, consider the diagonal morphism

A:X —5XxX, P (PP).

The image A(X) C X x X is called the diagonal of X. Of course, the morphism A : X —
A(X) is an isomorphism onto its image (with inverse morphism being given by (P,Q) — P).
So the space A(X) is not really interesting as a new prevariety; instead the main question
is how A(X) is embedded in X x X:

Lemma 2.5.3. A prevariety X is a variety if and only if the diagonal A(X) is closed in
X xX.

Proof. 1t is obvious that a variety has this property (take ¥ = X X X and fi, f>» the two
projections to X). Conversely, if the diagonal A(X) is closed and f1, f> : Y — X are two
morphisms, then they induce a morphism (f1, f2) : ¥ — X x X by the universal property of
exercise 2.6.13, and

{PeY|fi(P)=f(P)}=(fi,£2) " (AX))

is closed. O

Lemma 2.5.4. Every affine variety is a variety. Any open or closed subprevariety of a
variety is a variety.

Proof. If X C A" is an affine variety with ideal I(X) = (fi,..., f;), the diagonal A(X) C
A" is an affine variety given by the equations f;(x,...,x,) =0fori=1,...,rand x; = y;
for i = 1,...,n, where xi,...,X,,y1,...,y, are the coordinates on A", This is obviously
closed, so X is a variety by lemma 2.5.3.

If Y C X is open or closed, then A(Y) = A(X)N (Y xY);i.e. if A(X) is closed in X x X
thensois A(Y)inY x Y. O

Example 2.5.5. Let us illustrate lemma 2.5.3 in the case of the affine line with a doubled
origin. So let X; = X, = A', and let X be the prevariety obtained by glueing X; to X, along
the identity on A\{0}. Then X X X is covered by the four affine varieties X| x X|, X; x X3,
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X, x X1, and X» x X, by exercise 2.6.13. As we glue along A'\{0} to obtain X, it follows
that the space X x X contains the point (P,Q) € Al x A!

e onceif P#0and Q #0,
o twiceif P=0and Q#0,orif P#0and Q =0,
e four times if P=0and Q = 0.

XxX

In particular, X x X contains four origins now. But the diagonal A(X) contains only two of
them (by definition of the diagonal we have to take the same origin in both factors). So on
the patch X; x X», the diagonal is given by {(P,P) ; P # 0} C X; x X, = A! x A!, which
is not closed. So we see again that X is not a variety.

2.6. Exercises.

Exercise 2.6.1. An algebraic set X C A? defined by a polynomial of degree 2 is called a
conic. Show that any irreducible conic is isomorphic either to Z(y — x?) or to Z(xy — 1).

Exercise 2.6.2. Let X,Y C A? be irreducible conics as in exercise 2.6.1, and assume that
X #7Y. Show that X and Y intersect in at most 4 points. For all n € {0,1,2,3,4}, find an
example of two conics that intersect in exactly n points. (For a generalization see theorem
6.2.1.)

Exercise 2.6.3. Which of the following algebraic sets are isomorphic over the complex
numbers?

(a) A! (b) Z(xy) C A?
(©) Z(x*+y*) C A2 (d) Z(y> — x> —x2) C A?
(e) Z(x* —y) C A? O Z(y—x*z—x) C A’

Exercise 2.6.4. Let X be an affine variety, and let G be a finite group. Assume that G acts
on X, i.e. that for every g € G we are given a morphism g : X — X (denoted by the same
letter for simplicity of notation), such that (goh)(P) = g(h(P)) for all g,h € Gand P € X.

(i) Let A(X)Y be the subalgebra of A(X) consisting of all G-invariant functions on
X,i.e.of all f:X — k such that f(g(P)) = f(P) for all P € X. Show that A(X)®
is a finitely generated k-algebra.

(i) By (i), there is an affine variety ¥ with coordinate ring A(X)Y, together with a
morphism 7t : X — Y determined by the inclusion A(X)® C A(X). Show that Y
can be considered as the quotient of X by G, denoted X /G, in the following
sense:

(a) mis surjective.
(b) If P,Q € X then nt(P) = n(Q) if and only if there is a g € G such that g(P) =
0.

(iii) For a given group action, is an affine variety with the properties (ii)(a) and (ii)(b)
uniquely determined?

(iv) Let Z, = {exp(ZX) ; k € Z} C C be the group of n-th roots of unity. Let Z, act
on C™ by multiplication in each coordinate. Show that C/Z, is isomorphic to C
for all n, but that C2 /Z,, is not isomorphic to C? forn > 2.

Exercise 2.6.5. Are the following statements true or false: if f: A" — A™ is a polynomial
map (i.e. f(P) = (fi(P),..., fin(P)) with f; € k[xy,...,x,]), and...
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(i) X C A" is an algebraic set, then the image f(X) C A™ is an algebraic set.
(ii) X C A™ is an algebraic set, then the inverse image f~!'(X) C A" is an algebraic
set.
(iii) X C A" is an algebraic set, then the graph I' = {(x, f(x))|x € X} C A" is an
algebraic set.

Exercise 2.6.6. Let f : X — Y be a morphism between affine varieties, and let f* : A(Y) —
A(X) be the corresponding map of k-algebras. Which of the following statements are true?

(i) If P€ X and Q €Y, then f(P) = Q if and only if (f*)~1(I(P)) =I1(Q).
(i) f* is injective if and only if f is surjective.
(iii) f* is surjective if and only if f is injective.
(iv) f is an isomorphism if and only if f* is an isomorphism.

If a statement is false, is there maybe a weaker form of it which is true?
Exercise 2.6.7. Let X be a prevariety. Show that:

(i) X is a Noetherian topological space,
(ii) any open subset of X is a prevariety.

Exercise 2.6.8. Let (X, Ox) be a prevariety, and let Y C X be an irreducible closed subset.
For every open subset U C Y define Oy (U) to be the ring of k-valued functions f on U
with the following property: for every point P € Y there is a neighborhood V of P in X and
a section F € Ox (V) such that f coincides with F on U.

(i) Show that the rings Oy (U) together with the obvious restriction maps define a
sheaf Oy onY.
(ii) Show that (Y, Oy) is a prevariety.

Exercise 2.6.9. Let X be a prevariety. Consider pairs (U, f) where U is an open subset
of X and f € Ox(U) a regular function on U. We call two such pairs (U, f) and (U’, )
equivalent if there is an open subset V in X with V.C UNU’ such that f|y = f|y.

(i) Show that this defines an equivalence relation.
(i) Show that the set of all such pairs modulo this equivalence relation is a field. It is
called the field of rational functions on X and denoted K (X).
(iii) If X is an affine variety, show that K(X) is just the field of rational functions as
defined in definition 2.1.3.
(iv) If U C X is any non-empty open subset, show that K(U) = K(X).

Exercise 2.6.10. If U is an open subset of a prevariety X and f : U — P! a morphism, is it
always true that f can be extended to a morphism f : X — P! ?

Exercise 2.6.11. Show that the prevariety P! is a variety.
Exercise 2.6.12.

(i) Show that every isomorphism f : A! — Al is of the form f(x) = ax + b for some

a,b € k, where x is the coordinate on Al

(ii) Show that every isomorphism f : P! — P! is of the form f(x) = ‘Zﬁs for some
a,b,c,d € k, where x is an affine coordinate on A! C P'. (For a generalization
see corollary 6.2.10.)

(iii) Given three distinct points Py, P>, P; € P! and three distinct points Q1, Q2,03 €
P!, show that there is a unique isomorphism f : P! — P! such that f(P,) = Q; for
i=1,2,3.

(Remark: If the ground field is C, the very same statements are true in the complex analytic
category as well, i. e. if “morphisms” are understood as “holomorphic maps” (and P' is
the Riemann sphere C.,). If you know some complex analysis and have some time to kill,
you may try to prove this too.)
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Exercise 2.6.13. Let X and Y be prevarieties with affine open covers {U;} and {V;}, re-
spectively. Construct the product prevariety X x Y by glueing the affine varieties U; x V;
together. Moreover, show that there are projection morphisms Ty : X XY — X and 7wy : X X
Y — Y satisfying the “usual” universal property for products: given morphisms f:Z — X
and g : Z — Y from any prevariety Z, there is a unique morphism 4 : Z — X x Y such that
f=mnxohandg=myoh.



