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10. CHERN CLASSES

For any vector bundle π : F → X of rank r on a scheme X we define an associated
projective bundle p : P(F)→ X whose fibers p−1(P) are just the projectivizations of
the affine fibers π−1(P). We construct natural line bundles OP(F)(d) on P(F) for all
d ∈ Z that correspond to the standard line bundles O(d) on projective spaces. As in
the case of vector bundles there are pull-back homomorphisms A∗(X)→ A∗(P(F))
between the Chow groups.

For a bundle as above we define the i-th Segre class si(F) : A∗(X)→ A∗−i(X) by
si(F) ·α = p∗(Dr−1+i

F · p∗α), where DF denotes the Cartier divisor associated to the
line bundle OP(F)(1). The Chern classes ci(F) are defined to be the inverse of the
Segre classes. Segre and Chern classes are commutative; they satisfy the projection
formula for proper push-forwards and are compatible with pull-backs. They are mul-
tiplicative on exact sequences. Moreover, ci(F) = 0 for i > r. The top Chern class
cr(F) has the additional geometric interpretation as the zero locus of a section of F .
Using the technique of Chern roots one can compute the Chern classes of almost any
bundle that is constructed from known bundles in some way (e. g. by means of direct
sums, tensor products, dualizing, exact sequences, symmetric and exterior products).

The Chern character ch(F) and Todd class td(F) are defined to be certain polyno-
mial combinations of the Chern classes of F . The Hirzebruch-Riemann-Roch theo-
rem states that ∑i hi(X ,F) = deg(ch(F) · td(TX )) for any vector bundle F on a smooth
projective scheme X . We study some examples and applications of this theorem and
give a sketch of proof.

10.1. Projective bundles. Recall that for any line bundle L on a variety X there is a
Cartier divisor on X corresponding to L that in turn defines intersection homomorphisms
Ak(X)→ Ak−1(X). These homomorphisms can be thought of as intersecting a k-cycle on
X with the divisor of any rational section of L . We now want to generalize this idea from
line bundles to vector bundles. To do so, we need some preliminaries on projective bundles
first.

Roughly speaking, the projective bundle P(E) associated to a vector bundle E of rank
r on a scheme X is simply obtained by replacing the fibers (that are all isomorphic to
Ar) by the corresponding projective spaces Pr−1 = (Ar\{0})/k∗. Let us give the precise
definition.

Definition 10.1.1. Let π : F → X be a vector bundle of rank r on a scheme X (see remark
7.3.2). In other words, there is an open covering {Ui} of X such that

(i) there are isomorphisms ψi : π−1(Ui)→Ui×Ar over Ui,
(ii) on the overlaps Ui∩U j the compositions

ψi ◦ψ
−1
j : (Ui∩U j)×Ar→ (Ui∩U j)×Ar

are linear in the coordinates of Ar, i. e. they are of the form

(P,x) 7→ (P,Ψi, jx)

where P ∈U , x = (x1, . . . ,xr) ∈ Ar, and the Ψi, j are r× r matrices with entries in
OX (Ui∩U j).

Then the projective bundle P(F) is defined by glueing the patches Ui×Pr−1 along the
same transition functions, i. e. by glueing Ui×Pr−1 to U j×Pr−1 along the isomorphisms

(Ui∩U j)×Pr−1→ (Ui∩U j)×Pr−1, (P,x) 7→ (P,Ψi, jx)

for all i, j, where P ∈Ui∩U j and x = (x1 : · · · : xr) ∈ Pr−1. We say that P(F) is a projective
bundle of rank r−1 on X .
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Note that in the same way as for vector bundles there is a natural projection morphism
p : P(F)→ X that sends a point (P,x) to P. In contrast to the vector bundle case however
the morphism p is proper (which follows easily from exercise 9.5.5).

Example 10.1.2. Let X = P1, and let F be the vector bundle (i. e. locally free sheaf)
OX ⊕OX (−1) on X . Then P(F) is a projective bundle of rank 1 on X , so it is a scheme of
dimension 2. We claim that P(F) is isomorphic to the blow-up P̃2 of the projective plane
in a point P. In fact, this can be checked directly: by definition 10.1.1 P(F) is obtained by
glueing two copies U1,U2 of A1×P1 along the isomorphism

(A1\{0})×P1→ (A1\{0})×P1, (z,(x1 : x2)) 7→ (
1
z
,(x1 : zx2)).

On the other hand, P̃2 is given by

P̃2 = {((x0 : x1 : x2),(y1 : y2)) ; x1y2 = x2y1} ⊂ P2×P1

(see example 4.3.4). Now an isomorphism is given by

U1 ∼= A1×P1→ P̃2, (z,(x1 : x2)) 7→ ((x1 : zx2 : x2),(z : 1)),

U2 ∼= A1×P1→ P̃2, (z,(x1 : x2)) 7→ ((x1 : x2 : zx2),(1 : z))

(note that this is compatible with the glueing isomorphism above).
To see geometrically that P̃2 is a projective bundle of rank 1 over P1 let p : P̃2 →

E ∼= P1 be the projection morphism onto the exceptional divisor as of example 9.2.14
(ii). The fibers of this morphism are the strict transforms of lines through P, so they are all
isomorphic to P1.

Remark 10.1.3. If F is a vector bundle and L a line bundle on X then P(F)∼= P(F⊗L). In
fact, tensoring F with L just multiplies the transition matrices Ψi, j of definition 10.1.1 with
a scalar function, which does not affect the morphism as the xi are projective coordinates.

Example 10.1.4. Let p : P(F)→ X be a projective bundle over a scheme X , given by an
open cover {Ui} of X and transition matrices Ψi, j as in definition 10.1.1. In this example
we want to construct line bundles OP(F)(d) for all d ∈ Z on P(F) that are relative versions
of the ordinary bundles OPr−1(d) on projective spaces.

The construction is simple: on the patches Ui×Pr−1 of P(F) we take the line bundles
OPr−1(d). On the overlaps Ui∩U j these line bundles are glued by ϕ 7→ϕ◦Ψi, j, where ϕ= f

g
is (locally) a quotient of homogeneous polynomials f ,g∈ k[x1, . . . ,xr] with deg f −degg=
d. Note that the ϕ◦Ψi, j satisfies the same degree conditions as the Ψi, j are linear functions.

Summarizing, we can say that sections of the line bundle OP(F)(d) are locally given by
quotients of two polynomials which are homogeneous in the fiber coordinates and whose
degree difference is d.

Construction 10.1.5. Again let p : P(F)→ X be a projective bundle over a scheme X ,
given by an open cover {Ui} of X and transition matrices Ψi, j. Consider the vector bundle
p∗F on P(F). It is given by glueing the patches Ui×Pr−1×Ar along the isomorphisms

(Ui∩U j)×Pr−1×Ar→ (Ui∩U j)×Pr−1×Ar, (P,x,y) 7→ (P,Ψi, jx,Ψi, jy),

where x = (x1 : · · · : xr) are projective coordinates on Pr−1, and y = (y1, . . . ,yr) are affine
coordinates on Ar. Now consider the subbundle S of p∗F given locally by the equations
xiy j = x jyi for all i, j = 1, . . . ,r, i. e. the subbundle of p∗F consisting of those (y1, . . . ,yr)
that are scalar multiples of (x1 : · · · : xr). Obviously, S is a line bundle on P(F) contained
in p∗F . Geometrically, the fiber of S over a point (P,x) ∈ P(F) is precisely the line in
the fiber FP whose projectivization is the point x. The line bundle S ⊂ p∗F is called the
tautological subbundle on P(F).
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We can actually identify the subbundle S in the language of example 10.1.4: we claim
that S is isomorphic to OP(F)(−1). In fact, an isomorphism is given by

OP(F)(−1)→ S, ϕ 7→ (yi = ϕ · xi),

where ϕ is (locally) the quotient of two polynomials homogeneous in the xi of degree dif-
ference−1. It is obvious that the ϕ ·xi are then quotients of two polynomials homogeneous
in the xi of the same degree, so that the yi are well-defined.

Example 10.1.6. One place where projective bundles occur naturally is in blow-ups. Re-
call from construction 4.3.2 that the blow-up X̃ of an affine variety X ⊂ An at a subvariety
Y ⊂ X with ideal I(Y ) = ( f1, . . . , fr) is defined to be the closure of the graph

Γ = {(P,( f1(P) : · · · : fr(P))) ; P ∈ X\Y} ⊂ X×Pr−1.

The exceptional hypersurface of the blow-up must be contained in Y ×Pr−1, which has
dimension dimY +r−1. So if Y has dimension dimX−r (which is the expected dimension
as its ideal has r generators) then the exceptional hypersurface must be all of Y ×Pr−1 for
dimensional reasons.

Let us now sketch how this construction can be generalized to blow-ups of arbitrary
(not necessarily affine) varieties X in a subvariety Y . For simplicity let us assume that
there are r line bundles L1, . . . ,Lr on X together with global sections si ∈ H0(X ,Li) such
that Y is scheme-theoretically the zero locus s1 = · · · = sr = 0. Then the straightforward
generalization of the above construction is to define the blow-up of X in Y to be the closure
of the graph

Γ = {(P,(s1(P) : · · · : sr(P)) ; P ∈ X\Y} ⊂ P(L1⊕·· ·⊕Lr).

As above, if Y has codimension r in X then the exceptional hypersurface of the blow-up is
the projective bundle P((L1⊕·· ·⊕Lr)|Y ) over Y .

Now recall from remark 7.4.17 and example 9.4.3 (ii) that the normal bundle of a smooth
codimension-1 hypersurface Y in a smooth variety X that is given as the zero locus of a
section of a line bundle L is just the restriction of this line bundle L to Y . If we iterate this
result r times we see that the normal bundle of a smooth codimension-r hypersurface Y in
a smooth variety X that is given as the zero locus of sections of r line bundles L1, . . . ,Lr
is just (L1⊕·· ·⊕Lr)|Y . Combining this with what we have said above we conclude that
the exceptional hypersurface of the blow-up of a smooth variety X in a smooth variety Y
is just the projectivized normal bundle P(NY/X ) over Y . This is a relative version of our
earlier statement that the exceptional hypersurface of the blow-up of a variety in a smooth
point is isomorphic to the projectivized tangent space at this point.

In the above argument we have used for simplicity that the codimension-r subvariety Y
is globally the zero locus of r sections of line bundles. Actually we do not need this. We
only need that Y is locally around every point the zero locus of r regular functions, as we
can then make the above construction locally and finally glue the local patches together.
Using techniques similar to those in theorem 9.3.7 one can show that every smooth subva-
riety Y of codimension r in a smooth variety X is locally around every point the zero locus
of r regular functions. So it is actually true in general that the exceptional hypersurface of
the blow-up of X in Y is P(NY/X ) if X and Y are smooth.

Finally, in analogy to the case of vector bundles in proposition 9.1.14 let us discuss
pull-back homomorphisms for Chow groups induced by projective bundles.

Lemma 10.1.7. Let F be a vector bundle on a scheme X of rank r+1, and let p :P(F)→X
be the associated projective bundle of rank r. Then there are pull-back homomorphisms

p∗ : Ak(X)→ Ak+r(P(F)), [V ] 7→ [p−1(V )]

for all k, satisfying the following compatibilities with our earlier constructions:
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(i) (Compatibility with proper push-forward) Let f : X → Y be a proper morphism,
and let F be a vector bundle of rank r+1 on Y . Form the fiber diagram

P( f ∗F)
f ′ //

p′

��

P(F)

p

��
X

f // Y.

Then p∗ f∗ = f ′∗p
′∗ as homomorphisms Ak(X)→ Ak+r(P(F)).

(ii) (Compatibility with intersection products) Let F be a vector bundle of rank r+1
on X, and let D ∈ PicX be a Cartier divisor (class). Then

p∗(D ·α) = (p∗D) · (p∗α)

in Ak+r−1(P(F)) for every k-cycle α ∈ Ak(X).

Proof. (i): Let V ⊂ X be a k-dimensional subvariety. Then p−1( f (V )) = f ′(p′−1(V )) =:
W , and both p∗ f∗[V ] and f ′∗p

′∗[V ] are equal to d · [W ], where d is the generic number of
inverse image points of f (resp. f ′) on f (V ) (resp. p−1( f (V )).

(ii): Let α = [V ] for a k-dimensional subvariety V ⊂ X . On V the Cartier divisor D is
given by a line bundle L . If ϕ is any rational section of L then the statement follows from
the obvious identity p∗ div(ϕ) = div(p∗ϕ). �

Remark 10.1.8. We have now constructed pull-back morphisms for Chow groups in three
cases:

(i) inclusions of open subsets (example 9.1.11),
(ii) projections from vector bundles (proposition 9.1.14),

(iii) projections from projective bundles (lemma 10.1.7).

These are in fact special cases of a general class of morphisms, called flat morphisms, for
which pull-back maps exist. See [F] section 1.7 for more details.

10.2. Segre and Chern classes of vector bundles. Let X be a scheme, and let F be a
vector bundle of rank r on X . Let p : P(F)→ X be the projection from the corresponding
projective bundle. Note that we have the following constructions associated to p:

(i) push-forward homomorphisms p∗ : Ak(P(F)) → Ak(X) since p is proper (see
corollary 9.2.12),

(ii) pull-back homomorphisms p∗ : Ak(X)→ Ak+r−1(P(F)) by lemma 10.1.7,
(iii) a line bundle OP(F)(1) on P(F) by example 10.1.4 (the dual of the tautological

subbundle).

We can now combine these three operations to get homomorphisms of the Chow groups of
X that depend on the vector bundle F :

Definition 10.2.1. Let X be a scheme, and let F be a vector bundle of rank r on X . Let
p :P(F)→X be the projection map from the associated projective bundle. Assume for sim-
plicity that X (and hence P(F)) is irreducible (see below), so that the line bundle OP(F)(1)
corresponds to a Cartier divisor DF on P(F). Now for all i≥−r+1 we define Segre class
homomorphisms by the formula

si(F) : Ak(X)→ Ak−i(X), α 7→ si(F) ·α := p∗(Dr−1+i
F · p∗α).

Remark 10.2.2. We will discuss some geometric interpretations of Segre classes (or rather
some combinations of them) later in proposition 10.2.3 (i) and (ii), proposition 10.3.12, and
remark 10.3.14. For the moment let us just note that every vector bundle F gives rise to
these homomorphisms si(F) that look like intersections (hence the notation si(F) ·α) with
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some object of codimension i as they decrease the dimension of cycles by i. (In algebraic
topology the Segre class si(F) is an object in the cohomology group H2i(X ,Z).)

Note also that the condition that X be irreducible is not really necessary: even if OP(F)(1)
does not determine a Cartier divisor on P(F) it does so on every subvariety of P(F), and
this is all we need for the construction of the intersection product (as we intersect with a
cycle in P(F) which is by definition a formal linear combination of subvarieties).

Proposition 10.2.3. Let X and Y be schemes.

(i) For any vector bundle F on X we have
• si(F) = 0 for i < 0,
• s0(F) = id.

(ii) For any line bundle L on X we have si(L) ·α = (−1)iDi ·α for i ≥ 0 and all
α ∈ A∗(X), where D is the Cartier divisor class associated to the line bundle L.

(iii) (Commutativity) If F1 and F2 are vector bundles on X, then

si(F1) · s j(F2) = s j(F2) · si(F1)

as homomorphisms Ak(X)→ Ak−i− j(X) for all i, j (where the dot denotes the
composition of the two homomorphisms).

(iv) (Projection formula) If f : X → Y is proper, F is a vector bundle on Y , and α ∈
A∗(X), then

f∗(si( f ∗F) ·α) = si(F) · f∗α.

(v) (Compatibility with pull-back) If f : X → Y is a morphism for which a pull-back
f ∗ : A∗(Y )→ A∗(X) exists (see remark 10.1.8), F is a vector bundle on Y , and
α ∈ A∗(Y ), then

si( f ∗F) · f ∗α = f ∗(si(F) ·α).

Proof. (i): Let V ⊂ X be a k-dimensional subvariety. By construction we can represent
si(F) · [V ] by a cycle of dimension k− i supported in V . As Zk−i(V ) = 0 for i < 0 and
Zk(V ) = [V ] we conclude that si(F) = 0 for i < 0 and s0(F) · [V ] = n · [V ] for some n ∈ Z.
The computation of the multiplicity n is a local calculation, so we can replace X by an
open subset and thus assume that F is a trivial bundle. In this case P(F) = X ×Pr−1 and
DF is a hyperplane in Pr−1. So Dr−1

F is a point in Pr−1, i. e. Dr−1
F · p∗[V ] = [V ×{pt}] and

hence s0(F) · [V ] = [V ].
(ii): If L is a line bundle then P(L) = X and p is the identity. Hence the statement

follows from the identity OP(L)(−1) = L.
The proofs of (iii), (iv), and (v) all follow from the various compatibilities between

push-forward, pull-back, and intersection products. As an example we give the proof of
(iv), see [F] proposition 3.1 for the other proofs.

For (iv) consider the fiber square

P( f ∗F)
f ′ //

p′ ��

P(F)

p
��

X
f // Y
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and denote the Cartier divisors associated to the line bundles OP(F)(1) and OP( f ∗F)(1) by
DF and D′F , respectively. Then

f∗(si( f ∗F) ·α) = f∗p′∗(D
′
F

r−1+i · p′∗α) by definition 10.2.1
= p∗ f ′∗(D

′
F

r−i+1 · p′∗α) by remark 9.2.10
= p∗ f ′∗(( f ′∗DF)

r−i+1 · p′∗α) as D′F = f ′∗DF

= p∗(Dr−i+1
F · f ′∗p

′∗α) by lemma 9.4.10

= p∗(Dr−i+1
F · p∗ f∗α) by lemma 10.1.7 (i)

= si(E) · f∗α by definition 10.2.1.

�

Corollary 10.2.4. Let F be a vector bundle on a scheme X, and let p : P(F)→ X be
the projection. Then p∗ : A∗(P(F))→ A∗(X) is surjective and p∗ : A∗(X)→ A∗(P(F)) is
injective.

Proof. By proposition 10.2.3 (i) we have

α = s0(F) ·α = p∗(Dr−1
F · p∗α)

for all α ∈ A∗(X), so p∗ is surjective. The same formula shows that α = 0 if p∗α = 0, so
p∗ is injective. �

By proposition 10.2.3 (iii) any polynomial expression in the Segre classes of some vec-
tor bundles acts on the Chow groups of X . Although the Segre classes are the characteristic
classes of vector bundles that are the easiest ones to define, some others that are polyno-
mial combinations of them have nicer properties and better geometric interpretations. Let
us now define these combinations.

Definition 10.2.5. Let X be a scheme, and let F be a vector bundle of rank r on X . The
total Segre class of F is defined to be the formal sum

s(F) = ∑
i≥0

si(F) : A∗(X)→ A∗(X).

Note that:

(i) All si(F) can be recovered from the homomorphism s(F) by considering the
graded parts.

(ii) Although the sum over i in s(F) is formally infinite, it has of course only finitely
many terms as Ak(X) is non-zero only for finitely many k.

(iii) The homomorphism s(F) is in fact an isomorphism of vector spaces: by proposi-
tion 10.2.3 (i) it is given by a triangular matrix with ones on the diagonal (in the
natural grading of A∗(X)).

By (iii) it makes sense to define the total Chern class of F

c(F) = ∑
i≥0

ci(F)

to be the inverse homomorphism of s(F). In other words, the Chern classes ci(F) are the
unique homomorphisms ci(F) : Ak(X)→ Ak−i(X) such that

s(F) · c(F) = (1+ s1(F)+ s2(F)+ · · ·) · (c0(F)+ c1(F)+ c2(F)+ · · ·) = id .



194 Andreas Gathmann

Explicitly, the first few Chern classes are given by

c0(F) = 1,

c1(F) =−s1(F),

c2(F) =−s2(F)+ s1(F)2,

c3(F) =−s3(F)+2s1(F)s2(F)− s1(F)3.

Proposition 10.2.3 translates directly into corresponding statements about Chern classes:

Proposition 10.2.6. Let X and Y be schemes.

(i) For any line bundle L on X with associated Cartier divisor class D we have
c(L) · α = (1 + D) · α. In other words, ci(L) = 0 for i > 1, and c1(L) is the
homomorphism of intersection with the Cartier divisor class associated to L. By
abuse of notation, the Cartier divisor class associated to L is often also denoted
c1(L).

(ii) (Commutativity) If F1 and F2 are vector bundles on X, then

ci(F1) · c j(F2) = c j(F2) · ci(F1)

for all i, j.
(iii) (Projection formula) If f : X → Y is proper, F is a vector bundle on Y , and α ∈

A∗(X), then
f∗(ci( f ∗F) ·α) = ci(F) · f∗α.

(iv) (Pull-back) If f : X→Y is a morphism for which a pull-back f ∗ : A∗(Y )→ A∗(X)
exists, F is a vector bundle on Y , and α ∈ A∗(Y ), then

ci( f ∗F) · f ∗α = f ∗(ci(F) ·α).

Proof. (i): This follows from proposition 10.2.3, since

(1−D+D2−D3±·· ·)(1+D) = 1.

(ii), (iii), (iv): All these statements follow from the corresponding properties of Segre
classes in proposition 10.2.3, taking into account that the Chern classes are just polynomi-
als in the Segre classes. �

10.3. Properties of Chern classes. In this section we will show how to compute the
Chern classes of almost any bundle that is constructed from other known bundles in some
way (e. g. by means of direct sums, tensor products, dualizing, exact sequences, symmetric
and exterior products). We will also discuss the geometric meaning of Chern classes.

The most important property of Chern classes is that they are multiplicative in exact
sequences:

Proposition 10.3.1. Let 0→ F ′→ F → F ′′→ 0 be an exact sequence of vector bundles
on a scheme X. Then c(F) = c(F ′) · c(F ′′).

Proof. We prove the statement by induction on the rank of F ′′.
Step 1: rankF ′′ = 1. We have to show that s(F ′) · [V ] = c(F ′′) · s(F) · [V ] for all k-

dimensional subvarieties V ⊂ X . Consider the diagram

P′ = P(F ′|V ) �
� i //

p′ ''

P(F |V ) = P

p
xx

V
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Then
c(F ′′) · s(F) · [V ] = c(F ′′) · p∗((1+DF +D2

F + · · ·) · [P]) by definition 10.2.1
= c(F ′′) · p∗(s(OP(−1)) · [P]) by proposition 10.2.3 (ii)
= (1+ c1(F ′′)) · p∗(s(OP(−1)) · [P]) by proposition 10.2.6 (i)
= p∗((1+ c1(p∗F ′′)) · s(OP(−1)) · [P]) by proposition 10.2.6 (iii).

On the other hand, we have a bundle map OP(−1) ↪→ p∗F → p∗F ′′ on P, which by con-
struction fails to be injective exactly at the points of P′. In other words, P′ in P is the
(scheme-theoretic) zero locus of a section of the line bundle p∗F ′′⊗OP(−1)∨. So we get

s(F ′) · [V ] = p′∗(s(OP′(−1)) · [P′])
= p∗i∗(s(i∗OP(−1)) · [P′])
= p∗(s(OP(−1)) · i∗[P′])
= p∗(s(OP(−1)) · (c1(p∗F ′′)− c1(OP(−1))) · [P]).

Subtracting these two equations from each other, we get

c(F ′′) · s(F) · [V ]− s(F ′) · [V ] = p∗(s(OP(−1))c(OP(−1)) [P]) = p∗[P] = 0

for dimensional reasons.
Step 2: rankF ′′ > 1. Let Q = P(F ′′∨) with projection map q : Q→ X , and let L∨ ⊂

q∗F ′′∨ be the universal line bundle. Then we get a commutative diagram of vector bundles
on Q with exact rows and columns

0

��

0

��
0 // q∗F ′ // F̃ //

��

F̃ ′′ //

��

0

0 // q∗F ′ // q∗F //

��

q∗F ′′ //

��

0

L

��

L

��
0 0

for some vector bundles F̃ and F̃ ′′ on Q with rank F̃ ′′ = rankF ′′−1. Recall that we want
to prove the statement that for any short exact sequence of vector bundles the Chern poly-
nomial of the bundle in the middle is equal to the product of the Chern polynomials of the
other two bundles. In the above diagram we know that this is true for the columns by step
1 and for the top row by the inductive assumption; hence it must be true for the bottom row
as well. So we have shown that

c(q∗F) = c(q∗F ′) · c(q∗F ′′).
It follows that

q∗c(F) = q∗(c(F ′) · c(F ′′))
by proposition 10.2.6 (iv), and finally that

c(F) = c(F ′) · c(F ′′)
as q∗ is injective by corollary 10.2.4. �

Remark 10.3.2. Of course proposition 10.3.1 can be split up into graded parts to obtain the
equations

ck(F) = ∑
i+ j=k

ci(F ′) · c j(F ′′)
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for all k≥ 0 and any exact sequence 0→ F ′→ F→ F ′′→ 0 of vector bundles on a scheme
X .

Note moreover that by definition the same relation s(F) = s(F ′) · s(F ′′) then holds for
the Segre classes.

Example 10.3.3. In this example we will compute the Chern classes of the tangent bundle
TX of X = Pn. By lemma 7.4.15 we have an exact sequence of vector bundles on X

0→ OX → OX (1)⊕(n+1)→ TX → 0.

Moreover proposition 10.2.6 (i) implies that c(OX ) = 1 and c(OX (1)) = 1+H, where H is
(the divisor class of) a hyperplane in X . So by proposition 10.3.1 it follows that

c(TX ) = c(OX (1))n+1/c(OX ) = (1+H)n+1,

i. e. ck(TX ) =
(n+1

k

)
·Hk (where Hk is the class of a linear subspace of X of codimension k).

Remark 10.3.4. Note that proposition 10.3.1 allows us to compute the Chern classes of any
bundle F of rank r on a scheme X that has a filtration

0 = F0 ⊂ F1 ⊂ ·· · ⊂ Fr−1 ⊂ Fr = F

by vector bundles such that the quotients Li := Fi/Fi−1 are all line bundles (i. e. Fi has rank
i for all i). In fact, in this case a recursive application of proposition 10.3.1 to the exact
sequences

0→ Fi−1→ Fi→ Li→ 0
yields (together with proposition 10.2.6 (i))

c(F) =
r

∏
i=1

(1+Di)

where Di = c1(Li) is the divisor associated to the line bundle Li.
Unfortunately, not every vector bundle admits such a filtration. We will see now how-

ever that for computations with Chern classes we can essentially pretend that such a filtra-
tion always exists.

Lemma 10.3.5. (Splitting construction) Let F be a vector bundle of rank r on a scheme X.
Then there is a scheme Y and a morphism f : Y → X such that

(i) f admits push-forwards and pull-backs for Chow groups (in fact it will be an
iterated projective bundle),

(ii) the push-forward f∗ is surjective,
(iii) the pull-back f ∗ is injective,
(iv) f ∗F has a filtration by vector bundles

0 = F0 ⊂ F1 ⊂ ·· · ⊂ Fr−1 ⊂ Fr = f ∗F

such that the quotients Fi/Fi−1 are line bundles on Y .

In other words, “every vector bundle admits a filtration after pulling back to an iterated
projective bundle”.

Proof. We construct the morphism f by induction on rankF . There is nothing to do if
rankF = 1. Otherwise set Y ′ = P(F∨) and let f ′ : Y ′ → X be the projection. Let L∨ ⊂
f ′∗F∨ be the tautological line bundle on Y ′. Then we have an exact sequence of vector
bundles 0→ F̃→ f ′∗F→ L→ 0 on Y ′, where rank F̃ = rankF−1. Hence by the inductive
assumption there is a morphism f ′′ : Y → Y ′ such that f ′′∗F̃ has a filtration (Fi) with line
bundle quotients. If we set f = f ′ ◦ f ′′ it follows that we have an induced filtration of f ∗F
on Y

0 = F0 ⊂ F1 ⊂ ·· · ⊂ Fr−1 = f ′′∗F̃ ⊂ f ∗F
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with line bundle quotients. Moreover, f∗ is surjective and f ∗ is injective, as this is true for
f ′′ by the inductive assumption and for f ′ by corollary 10.2.4. �

Construction 10.3.6. (Splitting construction) Suppose one wants to prove a universal
identity among Chern classes of vector bundles on a scheme X , e. g. the statement that
ci(F) = 0 whenever i > rankF (see corollary 10.3.7 below). If the identity is invariant
under pull-backs (which it essentially always is because of proposition 10.2.6 (iv)) then one
can assume that the vector bundles in question have filtrations with line bundle quotients.
More precisely, pick a morphism f : Y → X as in lemma 10.3.5. We can then show the
identity for the pulled-back bundle f ∗F on Y , using the filtration. As the pull-back f ∗ is
injective and commutes with the identity we want to show, the identity then follows for F
on X as well. (This is the same argument that we used already at the end of the proof of
proposition 10.3.1.)

Corollary 10.3.7. Let F be a vector bundle of rank r on a scheme X. Then ci(F) = 0 for
all i > r.

Proof. By the splitting construction 10.3.6 we can assume that F has a filtration with line
bundle quotients Li, i= 1, . . . ,r. But then c(F)=∏

r
i=1(1+c1(Li)) by remark 10.3.4, which

obviously has no parts of degree bigger than r. �

Remark 10.3.8. This vanishing of Chern classes beyond the rank of the bundle is a property
that is not shared by the Segre classes (see e. g. proposition 10.2.3 (ii)). This is one reason
why Chern classes are usually preferred over Segre classes in computations (although they
carry the same information).

Remark 10.3.9. The splitting construction is usually formalized as follows. Let F be a
vector bundle of rank r on a scheme X . We write formally

c(F) =
r

∏
i=1

(1+αi).

There are two ways to think of the α1, . . . ,αr:

• The αi are just formal “variables” such that the k-th elementary symmetric poly-
nomial in the αi is exactly ck(F). So any symmetric polynomial in the αi is
expressible as a polynomial in the Chern classes of F in a unique way.

• After having applied the splitting construction, the vector bundle F has a filtration
with line bundle quotients Li. Then we can set αi = c1(Li), and the decomposition
c(F) = ∏

r
i=1(1+αi) becomes an actual equation (and not just a formal one).

The αi are usually called the Chern roots of F . Using the splitting construction and Chern
roots, one can compute the Chern classes of almost any bundle that is constructed from
other known bundles by standard operations:

Proposition 10.3.10. Let X be a scheme, and let F and F ′ be vector bundles with Chern
roots (αi)i and (α′j) j, respectively. Then:

(i) F∨ has Chern roots (−αi)i.
(ii) F⊗F ′ has Chern roots (αi +α′j)i, j.

(iii) SkF has Chern roots (αi1 + · · ·+αik)i1≤···≤ik .
(iv) ΛkF has Chern roots (αi1 + · · ·+αik)i1<···<ik .

Proof. (i): If F has a filtration 0 = F0 ⊂ F1 ⊂ ·· · ⊂ Fr = F with line bundle quotients Li =
Fi/Fi−1, then F∨ has an induced filtration 0=(F/Fr)

∨⊂ (F/Fr−1)
∨⊂ ·· · ⊂ (F/F0)

∨=F∨

with line bundle quotients L∨i .
(ii): If F and F ′ have filtrations

0 = F0 ⊂ F1 ⊂ ·· · ⊂ Fr = F and 0 = F ′0 ⊂ F ′1 ⊂ ·· · ⊂ F ′s = F ′
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with line bundle quotients Li := Fi/Fi−1 and L′i := F ′i /F ′i−1, then F⊗F ′ has a filtration

0 = F0⊗F ′ ⊂ F1⊗F ′ ⊂ ·· · ⊂ Fr⊗F ′ = F⊗F ′

with quotients Li⊗F ′. But Li⊗F ′ itself has a filtration

0 = Li⊗F ′0 ⊂ Li⊗F ′1 ⊂ ·· · ⊂ Li⊗F ′s = Li⊗F ′

with quotients Li⊗L′j, so the result follows.
(iii) and (iv) follow in the same way. �

Example 10.3.11. The results of proposition 10.3.10 can be restated using Chern classes
instead of Chern roots. For example, (i) just says that ci(F∨) = (−1)ici(F). It is more
difficult to write down closed forms for the Chern classes in the cases (ii) to (iv). For
example, if F ′ = L is a line bundle, then

c(F⊗L) = ∏
i
(1+(αi +α

′)) = ∑
i
(1+ c1(L))r−i ci(F)

where r = rankF . So for 0≤ p≤ r we have

cp(F⊗L) =
p

∑
i=0

(
r− i
p− i

)
ci(F)c1(L)p−i.

Also, from part (iv) it follows immediately that c1(F) = c1(Λ
rF).

As a more complicated example, assume that F is a rank-2 bundle on a scheme X
and let us compute the Chern classes of S3F . Say F has Chern roots α1 and α2, so that
c1(F) = α1 +α2 and c2(F) = α1α2. Then by part (iii) a tedious but easy computation
shows that

c(S3F) = (1+3α1)(1+2α1 +α2)(1+α1 +2α2)(1+3α2)

= 1+6c1(F)+10c2(F)+11c1(F)2 +30c1(F)c2(F)

+6c1(F)3 +9c2(F)2 +18c1(F)2c2(F).

Splitting this up into graded pieces one obtains the individual Chern classes, e. g.

c4(S3F) = 9c2(F)2 +18c1(F)2c2(F).

Now that we have shown how to compute Chern classes let us discuss their geometric
meaning. By far the most important property of Chern classes is that the “top Chern class”
of a vector bundle (i. e. cr(F) if r = rankF) is the class of the zero locus of a section:

Proposition 10.3.12. Let F be a vector bundle of rank r on an n-dimensional scheme X.
Let s∈ Γ(F) be a global section of F, and assume that its scheme-theoretic zero locus Z(s)
has dimension n− r (as expected). Then [Z(s)] = cr(F) · [X ] ∈ An−r(X).

Proof. We will only sketch the proof; for details especially about multiplicities we refer to
[F] section 14.1.

We prove the statement by induction on r. Applying the splitting principle we may
assume that there is an exact sequence

0→ F ′→ F → L→ 0 (∗)

of vector bundles on X , where L is a line bundle and rankF ′ = rankF − 1. Now let s ∈
Γ(X ,F) be a global section of F as in the proposition. Then s induces

(i) a section l ∈ Γ(X ,L), and
(ii) a section s′ ∈ Γ(Z(l),F ′) (i. e. “s is a section of F ′ on the locus where the induced

section on L vanishes”).
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Let us assume that l is not identically zero, and denote by i : Z(l) ↪→ X the inclusion
morphism. Note that then i∗[Z(s′)] = cr−1(F) · [Z(l)] by the induction hypothesis, and
[Z(l)] = c1(L) · [X ] as the Weil divisor associated to a line bundle is just the zero locus of a
section. Combining these results we get

[Z(s)] = i∗[Z(s′)] = cr−1(F) · c1(L) · [X ].

But applying proposition 10.3.1 to the exact sequence (∗) we get cr(F) = cr−1(F ′) ·c1(L),
so the result follows. �

Remark 10.3.13. Proposition 10.3.12 is the generalization of our old statement that the first
Chern class of a line bundle (i. e. the divisor associated to a line bundle) is the zero locus
of a (maybe rational) section of that bundle. In contrast to the line bundle case however, it
is not clear that a section of the vector bundle exists that vanishes in the right codimension.
This is why proposition 10.3.12 cannot be used as a definition for the top Chern class.

Remark 10.3.14. There are analogous interpretations for the intermediate Chern classes
ck(F) that we state without proof: let F be a vector bundle of rank r on a scheme X . Let
s1, . . . ,sr+1−k be global sections of X , and assume that the (scheme-theoretic) locus Z ⊂ X
where the sections s1, . . . ,sr+1−k are linearly dependent has codimension k in X (which is
the expected codimension). Then [Z] = ck(F) · [X ] ∈ A∗(X). (For a proof of this statement
see [F] example 14.4.1).

Two special cases of this property are easy to see however:

(i) In the case k = r we are reduced to proposition 10.3.12.
(ii) In the case k = 1 the locus Z is just the zero locus of a section of ΛrF , so we have

[Z] = c1(Λ
rF) = c1(F) (the latter equality is easily checked using proposition

10.3.10 (iv)).

Example 10.3.15. As an example of proposition 10.3.12 let us recalculate that there are 27
lines on a cubic surface X in P3 (see section 4.5). To be more precise, we will not reprove
here that the number of lines in X is finite; instead we will assume that it is finite and just
recalculate the number 27 under this assumption.

Let G(1,3) be the 4-dimensional Grassmannian variety of lines in P3. As in construction
10.1.5 there is a tautological rank-2 subbundle F of the trivial bundle C4 whose fiber over
a point [L] ∈ G(1,3) (where L ⊂ P3 is a line) is precisely the 2-dimensional subspace of
C4 whose projectivization is L. Dualizing, we get a surjective morphism of vector bundles
(C4)∨ → F∨ that corresponds to restricting a linear function on C4 (or P3) to the line L.
Taking the d-th symmetric power of this morphism we arrive at a surjective morphism
Sd(C4)∨ → SdF∨ that corresponds to restricting a homogeneous polynomial of degree d
on P3 to L.

Now let X = { f = 0} be a cubic surface. By what we have just said the polynomial f
determines a section of S3F∨ whose set of zeros in G(1,3) is precisely the set of lines that
lie in X (i. e. the set of lines on which f vanishes). So assuming that this set is finite we see
by proposition 10.3.12 that the number of lines in the cubic surface X is the degree of the
cycle c4(S3F∨) on G(1,3).

To compute this number note that by example 10.3.11 we have

c4(S3F∨) = 9c2(F∨)2 +18c1(F∨)2c2(F∨),

so that it remains to compute the numbers c2(F∨)2 and c1(F∨)2c2(F∨). There are general
rules (called “Schubert calculus”) how to compute such intersection products on Grass-
mannian varieties, but in this case we can also compute the result directly in a way similar
to that in example 9.4.9:

(i) By exactly the same reasoning as above, c2(F∨) = c2(S1F∨) is the locus of all
lines in P3 that are contained in a given plane.
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(ii) The class c1(F∨) = c1(Λ
2F∨) is (by definition of the exterior product, see also

remark 10.3.14) the locus of all lines L⊂ P3 such that two given linear equations
f1, f2 on P4 become linearly dependent when restricted to the line. This means
that f1|L and f2|L must have their zero at the same point of L. In other words, L
intersects Z( f1, f2), which is a line. In summary, c1(F∨) is just the class of lines
that meet a given line in P3.

Using these descriptions we can now easily compute the required intersection products:
c2(F∨)2 is the number of lines that are contained in two given planes in P3, so it is 1 (the
line must precisely be the intersection line of the two planes). Moreover, c1(F∨)2c2(F∨) is
the number of lines intersecting two given lines and lying in a given plane, i. e. the number
of lines through two points in a plane, which is 1.

Summarizing, we get that the number of lines on a cubic surface is

c4(S3F∨) = 9c2(F∨)2 +18c1(F∨)2c2(F∨) = 9 ·1+18 ·1 = 27.

Remark 10.3.16. The preceding example 10.3.15 shows very well how enumerative prob-
lems can be attacked in general. By an enumerative problem we mean that we want to
count the number of curves in some space with certain conditions (e. g. lines through two
points, lines in a cubic surface, plane conics through 5 points, and so on). Namely:

(i) Find a complete (resp. compact) “moduli space” M whose points correspond to
the curves one wants to study (in the above example: the Grassmannian G(1,3)
that parametrizes lines in P3).

(ii) Every condition that one imposes on the curves (passing through a point, lying in
a given subvariety, . . . ) corresponds to some intersection-theoretic cycle on M —
a divisor, a combination of Chern classes, or something else.

(iii) If the expected number of curves satisfying the given conditions is finite then the
intersection product of the cycles in (ii) will have dimension 0. As M is complete
the degree of this zero-cycle is a well-defined integer. It is called the virtual
solution to the enumerative problem. Note that this number is well-defined even
if the actual number of curves satisfying the given conditions is not finite.

(iv) It is now a different (and usually more difficult, in any case not an intersection-
theoretic) problem to figure out whether the actual number of curves satisfying
the given conditions is finite or not, and if so whether they are counted in the
intersection product of (iii) with the scheme-theoretic multiplicity 1. If this is the
case then the solution of (iii) is said to be enumerative (and not only virtual). For
example, we have shown in section 4.5 that the number 27 computed intersection-
theoretically in example 10.3.15 is actually enumerative for any smooth cubic
surface X .

10.4. Statement of the Hirzebruch-Riemann-Roch theorem. As a final application of
Chern classes we will now state and sketch a proof of the famous Hirzebruch-Riemann-
Roch theorem that is a vast and very useful generalization (yet still not the most general
version) of the Riemann-Roch theorem (see section 7.7, in particular remark 7.7.7).

As usual the goal of the Riemann-Roch type theorems is to compute the dimension
h0(X ,F ) of the space of global sections of a sheaf F on a scheme X , in the case at hand
of a vector bundle on a smooth projective scheme X . As we have already seen in the case
where X is a curve and F a line bundle there is no easy general formula for this number
unless you add some “correction term” (that was −h1(X ,F ) in the case of curves). The
same is true in higher dimensions. Here the Riemann-Roch theorem will compute the Euler
characteristic of F :

Definition 10.4.1. Let F be a coherent sheaf on a projective scheme X . Then the dimen-
sions hi(X ,F ) = dimH i(X ,F ) are all finite by theorem 8.4.7 (i). We define the Euler
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characteristic of F to be the integer

χ(X ,F ) := ∑
i≥0

(−1)ihi(X ,F ).

(Note that the sum is finite as hi(X ,F ) = 0 for i > dimX .)

The “left hand side” of the Hirzebruch-Riemann-Roch theorem will just be χ(X ,F );
this is the number that we want to compute. Recall that there were many “vanishing the-
orems”, e. g. hi(X ,F ⊗OX (d)) = 0 for i > 0 and d � 0 by theorem 8.4.7 (ii). So in the
cases when such vanishing theorems apply the theorem will actually compute the desired
number h0(X ,F ).

The “right hand side” of the Hirzebruch-Riemann-Roch theorem is an intersection-
theoretic expression that is usually easy to compute. It is a certain combination of the
Chern (resp. Segre) classes of the bundle F (corresponding to the locally free sheaf F )
and the tangent bundle TX of X . These combinations will have rational coefficients, so we
have to tensor the Chow groups with Q (i. e. we consider formal linear combinations of
subvarieties with rational coefficients instead of integer ones).

Definition 10.4.2. Let F be a vector bundle of rank r with Chern roots α1, . . . ,αr on a
scheme X . Then we define the Chern character ch(F) : A∗(X)⊗Q→ A∗(X)⊗Q to be

ch(F) =
r

∑
i=1

exp(αi)

and the Todd class td(F) : A∗(X)⊗Q→ A∗(X)⊗Q to be

td(F) =
r

∏
i=1

αi

1− exp(−αi)
,

where the expressions in the αi are to be understood as formal power series, i. e.

exp(αi) = 1+αi +
1
2

α
2
i +

1
6

α
3
i + · · ·

and
αi

1− exp(−αi)
= 1+

1
2

αi +
1

12
α

2
i + · · · .

Remark 10.4.3. As usual we can expand the definition of ch(F) and td(F) to get symmetric
polynomials in the Chern roots which can then be written as polynomials (with rational
coefficients) in the Chern classes ci = ci(F) of F . Explicitly,

ch(F) = r+ c1 +
1
2
(c2

1−2c2)+
1
6
(c3

1−3c1c2 +3c3)+ · · ·

and td(F) = 1+
1
2

c1 +
1

12
(c2

1 + c2)+
1

24
c1c2 + · · · .

Remark 10.4.4. If 0→ F ′ → F → F ′′ → 0 is an exact sequence of vector bundles on X
then the Chern roots of F are just the union of the Chern roots of F ′ and F ′′. So we see that

ch(F) = ch(F ′)+ ch(F ′′)

and
td(F) = td(F ′) · td(F ′′).

We can now state the Hirzebruch-Riemann-Roch theorem:

Theorem 10.4.5. (Hirzebruch-Riemann-Roch theorem) Let F be a vector bundle on a
smooth projective variety X. Then

χ(X ,F) = deg(ch(F) · td(TX ))

where deg(α) denotes the degree of the dimension-0 part of the (non-homogeneous) cycle
α.



202 Andreas Gathmann

Before we sketch a proof of this theorem in the next section let us consider some exam-
ples.

Example 10.4.6. Let F = L be a line bundle on a smooth projective curve X of genus
g. Then χ(X ,L) = h0(X ,L)− h1(X ,L). On the right hand side, the dimension-0 part of
ch(L) · td(TX ), i. e. its codimension-1 part, is equal to

deg(ch(L) · td(TX )) = deg((1+ c1(L))(1+ 1
2 c1(TX ))) by remark 10.4.3

= deg(c1(L)− 1
2 c1(ΩX ))

= degL− 1
2 (2g−2) by corollary 7.6.6

= degL+1−g,

so we are recovering our earlier Riemann-Roch theorem of corollary 8.3.3.

Example 10.4.7. If F is a vector bundle of rank r on a smooth projective curve X then we
get in the same way

h0(X ,F)−h1(X ,F) = deg(ch(F) · td(TX ))

= deg((r+ c1(F))(1+
1
2

c1(TX )))

= degc1(F)+ r(1−g).

Example 10.4.8. Let L = OX (D) be a line bundle on a smooth projective surface X corre-
sponding to a divisor D. Now the dimension-0 part of the right hand side has codimension
2, so the Hirzebruch-Riemann-Roch theorem states that

h0(X ,L)−h1(X ,L)+h2(X ,L)

= deg(ch(F) · td(TX ))

= deg
((

1+ c1(L)+
1
2

c1(L)2
)(

1+
1
2

c1(TX )+
1

12
(c1(TX )

2 + c2(TX ))

))
=

1
2

D · (D−KX )+
K2

X + c2(TX )

12
.

Note that:

(i) The number χ(X ,OX ) =
K2

X+c2(TX )
12 is an invariant of X that does not depend on

the line bundle. The Hirzebruch-Riemann-Roch theorem implies that it is always
an integer, i. e. that K2

X + c2(TX ) is divisible by 12 (which is not at all obvious
from the definitions).

(ii) If X has degree d and L = OX (n) for n� 0 then h1(X ,L) = h2(X ,L) = 0 by
theorem 8.4.7 (ii). Moreover we then have D2 = dn2, so we get

h0(X ,OX (n)) =
d
2

n2 +
1
2
(H ·KX ) ·n+

K2
X + c2(TX )

12
where H denotes the class of a hyperplane (restricted to X). In other words, we
have just recovered proposition 6.1.5 about the Hilbert function of X . Moreover,
we have identified the non-leading coefficients of the Hilbert polynomial in terms
of intersection-theoretic data.

Example 10.4.9. The computation of example 10.4.8 works for higher-dimensional vari-
eties as well: let X be a smooth projective N-dimensional variety of degree d and consider
the line bundle L = OX (n) on X for n� 0. We see immediately that the codimension-N
part of ch(OX (n)) · td(TX ) is a polynomial in n of degree N with leading coefficient

1
N!

c1(L)N =
d

N!
nN ,
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which reproves proposition 6.1.5 (for smooth X). Moreover, we can identify the other co-
efficients of the Hilbert polynomial in terms of intersection-theoretic expressions involving
the characteristic classes of the tangent bundle of X .

Example 10.4.10. Let F = OX (d) be a line bundle on X = Pn. Then we can compute both
sides of the Hirzebruch-Riemann-Roch theorem explicitly and therefore prove the theorem
in this case:

As for the left hand side, proposition 8.4.1 implies that

χ(X ,OX (d)) =


h0(X ,OX (d)) =

(n+d
n

)
if d ≥ 0,

(−1)nhn(X ,OX (d)) = (−1)n
(−d−1

n

)
if d ≤−n−1,

0 otherwise.

Note that this means in fact in all cases that

χ(X ,OX (d)) =
(

n+d
n

)
.

As for the right hand side let us first compute the Todd class of TX . By the Euler sequence

0→ OX → OX (1)⊕(n+1)→ TX → 0

of lemma 7.4.15 together with the multiplicativity of Chern classes (see proposition 10.3.1)
we see that the Chern classes (and hence the Todd class) of TX are the same as those of
OX (1)⊕(n+1). But the Chern roots of the latter bundle are just n+1 times the class H of a
hyperplane, so it follows that

td(TX ) =
Hn+1

(1− exp(−H))n+1 .

As the Chern character of OX (d) is obviously exp(dH) we conclude that the right hand
side of the Hirzebruch-Riemann-Roch theorem is the Hn-coefficient of

Hn+1 exp(dH)

(1− exp(−H))n+1 .

But this is equal to the residue

resH=0
exp(dH)

(1− exp(−H))n+1 dH,

which we can compute using the substitution x = 1− exp(−H) (so exp(H) = 1
1−x and

dH
dx = 1

1−x ):

resH=0
exp(dH)

(1− exp(−H))n+1 dH = resx=0
(1− x)−d−1

xn+1 dx.

This number is equal to the xn-coefficient of (1− x)−d−1, which is simply

(−1)n
(
−d−1

n

)
=

(
n+d

n

)
in agreement with what we had found for the left hand side of the Hirzebruch-Riemann-
Roch theorem above. So we have just proven the theorem for line bundles on Pn.

10.5. Proof of the Hirzebruch-Riemann-Roch theorem. Finally we now want to give
a very short sketch of proof of the Hirzebruch-Riemann-Roch theorem 10.4.5, skipping
several subtleties from commutative algebra. The purpose of this section is just to give an
idea of the proof, and in particular to show why the rather strange-looking Todd classes
come into play. For a more detailed discussion of the proof or more general versions see
[F] chapter 15.
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The proof of the theorem relies heavily on certain constructions being additive (or oth-
erwise well-behaved) on exact sequences of vector bundles. Let us formalize this idea
first.

Definition 10.5.1. Let X be a scheme. The Grothendieck group of vector bundles K◦(X)
on X is defined to be the group of formal finite sums ∑i ai[Fi] where ai ∈ Z and the Fi
are vector bundles on X , modulo the relations [F ] = [F ′]+ [F ′′] for every exact sequence
0→ F ′→ F → F ′′→ 0. (Of course we then also have ∑

r
i=1(−1)i[Fi] = 0 for every exact

sequence
0→ F1→ F2→ ··· → Fr→ 0.)

Example 10.5.2. Definition 10.5.1 just says that every construction that is additive on
exact sequences passes to the Grothendieck group. For example:

(i) If X is projective then the Euler characteristic of a vector bundle (see definition
10.4.1) is additive on exact sequences by the long exact cohomology sequence of
proposition 8.2.1. Hence the Euler characteristic can be thought of as a homo-
morphism of Abelian groups

χ : K◦(X)→ Z, χ([F ]) = χ(X ,F).

(ii) The Chern character of a vector bundle is additive on exact sequences remark
10.4.4. So we get a homomorphism

ch : K◦(X)→ A∗(X)⊗Q, ch([F ]) = ch(F).

(It can in fact be shown that this homomorphism gives rise to an isomorphism
K◦(X)⊗Q→ A∗(X)⊗Q if X is smooth; see [F] example 15.2.16(b). We will not
need this however in our proof.)

(iii) Let X be a smooth projective variety. For the same reason as in (ii) the right hand
side of the Hirzebruch-Riemann-Roch theorem gives rise to a homomorphism

τ : K◦(X)→ A∗(X)⊗Q, τ(F) = ch(F) · td(TX ).

In particular, by (i) and (iii) we have checked already that both sides of the Hirzebruch-
Riemann-Roch theorem are additive on exact sequences (which is good). So to prove the
theorem we only have to check it on a set of generators for K◦(X). To use this to our
advantage however we first have to gather more information about the structure of the
Grothendieck groups. We will need the following lemma of which we can only sketch the
proof.

Lemma 10.5.3. Let X be a smooth projective scheme. Then for every coherent sheaf F on
X there is an exact sequence

0→ Fr→ Fr−1→ ··· → F0→ F → 0

where the Fi are vector bundles (i. e. locally free sheaves). We say that “every coherent
sheaf has a finite locally free resolution”. Moreover, if X = Pn then the Fi can all be
chosen to be direct sums of line bundles OX (d) for various d.

Proof. By a repeated application of lemma 8.4.6 we know already that there is a (possibly
infinite) exact sequence

· · · → Fr→ ·· · → F1→ F0→ F → 0.

Now one can show that for an n-dimensional smooth scheme the kernel K of the morphism
Fr−1→ Fr−2 is always a vector bundle (see [F] B.8.3). So we get a locally free resolution

0→ K→ Fr−1→ Fr−2→ ··· → F0→ F → 0

as required.
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If X = Pn with homogeneous coordinate ring S = k[x0, . . . ,xn] then one can show that a
coherent sheaf F on X is nothing but a graded S-module M (in the same way that a coherent
sheaf on an affine scheme SpecR is given by an R-module). By the famous Hilbert syzygy
theorem (see [EH] theorem III-57) there is a free resolution of M

0→
⊕

i

Sn,i→ ··· →
⊕

i

S1,i→
⊕

i

S0,i→M→ 0

where each S j,i is isomorphic to S, with the grading shifted by some constants a j,i. This
means exactly that we have a locally free resolution

0→
⊕

i

OX (an,i)→ ··· →
⊕

i

OX (a1,i)→
⊕

i

OX (a0,i)→ F → 0

of F . �

Corollary 10.5.4. The Hirzebruch-Riemann-Roch theorem 10.4.5 is true for any vector
bundle on Pn.

Proof. By lemma 10.5.3 (applied to X = Pn and a vector bundle F ) the Grothendieck
group K◦(Pn) is generated by the classes of the line bundles OPn(d) for d ∈ Z. As we
have already checked the Hirzebruch-Riemann-Roch theorem for these bundles in example
10.4.10 the statement follows by the remark at the end of example 10.5.2. �

Remark 10.5.5. To study the Hirzebruch-Riemann-Roch theorem for general smooth pro-
jective X let i : X→Pn be an embedding of X in projective space and consider the following
diagram:

K◦(X)
i∗ //

τ

��

K◦(Pn)
χ //

τ

��

Z� _

��
A(X)⊗Q i∗ // A(Pn)⊗Q

deg // Q.

Let us first discuss the right square. The homomorphisms χ and τ are explained in ex-
ample 10.5.2, and deg denotes the degree of the dimension-0 part of a cycle class. The
Hirzebruch-Riemann-Roch theorem for Pn of corollary 10.5.4 says precisely that this right
square is commutative.

Now consider the left square. The homomorphism τ is as above, and the i∗ in the bottom
row is the proper push-forward of cycles of corollary 9.2.12. We have to explain the push-
forward i∗ in the top row. Of course we would like to define i∗[F ] = [i∗F ] for any vector
bundle F on X , but we cannot do this directly as i∗F is not a vector bundle but only a
coherent sheaf on Pn. So instead we let

0→ Fr→ Fr−1→ ··· → F0→ i∗F → 0 (∗)

be a locally free resolution of the coherent sheaf i∗F on Pn and set

i∗ : K◦(X)→ K◦(Pn), i∗([F ]) =
r

∑
k=0

(−1)k[Fk].

One can show that this is indeed a well-defined homomorphism of groups (i. e. that this
definition does not depend on the choice of locally free resolution), see [F] section B.8.3.
But in fact we do not really need to know this: we do know by the long exact cohomology
sequence applied to (∗) that

χ(X ,F) =
r

∑
k=0

(−1)k
χ(Pn,Fk),



206 Andreas Gathmann

so it is clear that at least the composition χ◦ i∗ does not depend on the choice of locally free
resolution. The Hirzebruch-Riemann-Roch theorem on X is now precisely the statement
that the outer rectangle in the above diagram is commutative.

As we know already that the right square is commutative, it suffices therefore to show
that the left square is commutative as well (for any choice of locally free resolution as
above), i. e. that

r

∑
k=0

(−1)k ch(Fk) · td(TPr) = i∗(ch(F) · td(TX )).

As the Todd class is multiplicative on exact sequences by remark 10.4.4 we can rewrite
this using the projection formula as

r

∑
k=0

(−1)k ch(Fk) = i∗
ch(F)

td(NX/Pn)
.

Summarizing our ideas we see that to prove the general Hirzebruch-Riemann-Roch theo-
rem it suffices to prove the following proposition (for Y = Pn):

Proposition 10.5.6. Let i : X → Y be a closed immersion of smooth projective schemes,
and let F be a vector bundle on X. Then there is a locally free resolution

0→ Fr→ Fr−1→ ··· → F0→ i∗F → 0

of the coherent sheaf i∗F on Y such that
r

∑
k=0

(−1)k ch(Fk) = i∗
ch(F)

td(NX/Y )

in A∗(Y )⊗Q.

Example 10.5.7. Before we give the general proof let us consider an example where both
sides of the equation can be computed explicitly: let X be a smooth scheme, E a vector
bundle of rank r on X , and Y = P(E ⊕OX ). The embedding i : X → Y is given by X =
P(0⊕OX ) ↪→P(E⊕OX ). In other words, X is just “the zero section of a projective bundle”.
The special features of this particular case that we will need are:

(i) There is a projection morphism p : Y → X such that p◦ i = id.
(ii) X is the zero locus of a section of a vector bundle on Y : consider the exact se-

quence
0→ S→ p∗(E⊕OX )→ Q→ 0 (∗)

on Y , where S is the tautological subbundle of construction 10.1.5. The vector
bundle Q (which has rank r) is usually called the universal quotient bundle. Note
that we have a global section of p∗(E ⊕OX ) by taking the point (0,1) in every
fiber (i. e. 0 in the fiber of E and 1 in the fiber of OX ). By definition of S the
induced section s ∈ Γ(Q) vanishes precisely on P(0⊕OX ) = X .

(iii) Restricting (∗) to X (i. e. pulling the sequence back by i) we get the exact se-
quence

0→ i∗S→ E⊕OX → i∗Q→ 0 (∗)
on X . Note that the first morphism is given by λ 7→ (0,λ) by construction, so we
conclude that i∗Q = E.

(iv) As X is given in Y as the zero locus of a section of Q, we see from example 10.1.6
that the normal bundle of X in Y is just NX/Y = i∗Q = E.

Let us now check proposition 10.5.6 in this case. Note that away from the zero locus of s
there is an exact sequence

0→ OY
·s→ Q ∧s→ Λ

2Q ∧s→ Λ
3Q→ ·· · → Λ

r−1Q ∧s→ Λ
rQ→ 0
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of vector bundles (which follows from the corresponding statement for vector spaces).
Dualizing and tensoring this sequence with p∗F we get the exact sequence

0→ p∗F⊗Λ
rQ∨→ p∗F⊗Λ

r−1Q∨→ ··· → p∗F⊗Q∨→ p∗F → 0

again on Y\Z(s) = Y\X . Let us try to extend this exact sequence to all of Y . Note that the
last morphism p∗F⊗Q∨→ p∗F is just induced by the evaluation morphism s : Q∨→ OY ,
so its cokernel is precisely the sheaf (p∗F)|Z(s) = i∗F . One can show that the other stages
of the sequence remain indeed exact (see [F] B.3.4), so we get a locally free resolution

0→ p∗F⊗Λ
rQ∨→ p∗F⊗Λ

r−1Q∨→ ·· · → p∗F⊗Q∨→ p∗F → i∗F → 0

on Y . (This resolution is called the Koszul complex.) So what we have to check is that

r

∑
k=0

(−1)k ch(p∗F⊗Λ
kQ∨) = i∗

ch(F)

td(i∗Q)
.

But note that

i∗
ch(F)

td(i∗Q)
=

ch(p∗F)

td(Q)
· i∗[X ] =

ch(p∗F)cr(Q)

td(Q)

by the projection formula and proposition 10.3.12. So by the additivity of Chern characters
it suffices to prove that

r

∑
k=0

(−1)k ch(ΛkQ∨) =
cr(Q)

td(Q)
.

But this is easily done: if α1, . . . ,αr are the Chern roots of Q then the left hand side is

r

∑
k=0

(−1)k
∑

i1<···<ik

exp(−αi1−·· ·−αik) =
r

∏
i=1

(1−exp(−αi)) = α1 · · ·αr ·
r

∏
i=1

1− exp(−αi)

αi
,

which equals the right hand side. It is in fact this formal identity that explains the appear-
ance of Todd classes in the Hirzebruch-Riemann-Roch theorem.

Using the computation of this special example we can now give the general proof of the
Hirzebruch-Riemann-Roch theorem.

Proof. (of proposition 10.5.6) We want to reduce the proof to the special case considered
in example 10.5.7.

Let i : X → Y be any inclusion morphism of smooth projective varieties. We denote by
M be the blow-up of Y ×P1 in X ×{0}. The smooth projective scheme M comes together
with a projection morphism q : M→ P1. Its fibers q−1(P) for P 6= 0 are all isomorphic to
Y . The fiber q−1(0) however is reducible with two smooth components: one of them (the
exceptional hypersurface of the blow-up) is the projectivized normal bundle of X ×{0} in
Y ×P1 by example 10.1.6, and the other one is simply the blow-up Ỹ of Y in X . We are
particularly interested in the first component. As the normal bundle of X×{0} in Y ×P1 is
NX/Y ⊕OX this component is just the projective bundle P := P(NX/Y ⊕OX ) on X . Note that
there is an inclusion of the space X×P1 in M that corresponds to the given inclusion X ⊂Y
in the fibers q−1(P) for P 6= 0, and to the “zero section inclusion” X ⊂ P(NX/Y ⊕OX ) = P
as in example 10.5.7 in the fiber q−1(0). The following picture illustrates the geometric
situation.
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The idea of the proof is now simply the following: we have to prove an equality in the Chow
groups, i. e. modulo rational equivalence. The fibers q−1(0) and q−1(∞) are rationally
equivalent as they are the zero resp. pole locus of a rational function on the base P1, so they
are effectively “the same” for intersection-theoretic purposes. But example 10.5.7 shows
that the proposition is true in the fiber q−1(0), so it should be true in the fiber q−1(∞) as
well.

To be more precise, let F be a sheaf on X as in the proposition. Denote by pX : X×P1→
X the projection, and by iX : X ×P1→M the inclusion discussed above. Then iX ∗p∗X F is
a coherent sheaf on M that can be thought of as “the sheaf F on X in every fiber of q”. By
lemma 10.5.3 we can choose a locally free resolution

0→ Fr→ Fr−1→ ·· · → F0→ iX ∗p
∗
X F → 0 (1)

on M.
Note that the divisor [0]− [∞] on P1 is equivalent to zero by example 9.1.9. So it follows

that
r

∑
k=0

(−1)k ch(Fi) ·q∗([0]− [∞]) = 0

in A∗(M)⊗Q. Now by definition of the pull-back we have q∗[0] = [Ỹ ]+[P] and q∗[∞] = [Y ],
so we get the equality

r

∑
k=0

(−1)k ch(Fi|Ỹ ) · [Ỹ ]+
r

∑
k=0

(−1)k ch(Fi|P) · [P] =
r

∑
k=0

(−1)k ch(Fi|Y ) · [Y ] (2)

in A∗(M)⊗Q. But note that the restriction to Ỹ of the sheaf iX ∗p∗X F in (1) is the zero sheaf
as X×P1∩ Ỹ = /0 in M. So the sequence

0→ Fr|Ỹ → ··· → F1|Ỹ → F0|Ỹ → 0

is exact, which means that the first sum in (2) vanishes. The second sum in (2) is precisely
ch(F)

td(NX/Y )
· [X ] by example 10.5.7. So we conclude that

r

∑
k=0

(−1)k ch(Fi|Y ) · [Y ] =
ch(F)

td(NX/Y )
· [X ]

in A∗(M)⊗Q. Pushing this relation forward by the (proper) projection morphism from M
to Y then gives the desired equation. �

This completes the proof of the Hirzebruch-Riemann-Roch theorem 10.4.5.
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Remark 10.5.8. Combining proposition 10.5.6 with remark 10.5.5 we see that we have just
proven the following statement: let f : X → Y be a closed immersion of smooth projective
schemes, and let F be a coherent sheaf on X . Then there is a locally free resolution

0→ Fr→ Fr−1→ ·· · → F0→ f∗F → 0

of the coherent sheaf f∗F on Y such that
r

∑
k=0

(−1)k ch(Fk) · td(TY ) = f∗(ch(F) · td(TX )) ∈ A∗(Y )⊗Q.

This is often written as

ch( f∗F) · td(TY ) = f∗(ch(F) · td(TX )).

In other words, “the push-forward f∗ commutes with the operator τ of example 10.5.2
(iii)”.

It is the statement of the Grothendieck-Riemann-Roch theorem that this relation is
actually true for any proper morphism f of smooth projective schemes (and not just for
closed immersions). See [F] section 15 for details on how to prove this.

The Grothendieck-Riemann-Roch theorem is probably one of the most general Rie-
mann-Roch type theorems that one can prove. The only further generalization one could
think of is to singular schemes. There are some such generalizations to mildly singular
schemes; see [F] section 18 for details.

10.6. Exercises.

Exercise 10.6.1. Let X = P1, and for n ∈ Z let Fn be the projective bundle Fn = P(OX ⊕
OX (n)). Let p : Fn→X be the projection morphism. The surfaces Fn are called Hirzebruch
surfaces.

(i) Show that F0 ∼= P1×P1, and Fn ∼= F−n for all n.
(ii) Show that all fibers p−1(P) ⊂ Fn for P ∈ X are rationally equivalent as 1-cycles

on Fn. Denote this cycle by D ∈ A1(Fn).
(iii) Now let n ≥ 0. Show that the global section (1,xn

0) of OX ⊕OX (n) (where x0,
x1 are the homogeneous coordinates of X) determines a morphism s : X → Fn.
Denote by C ∈ A1(Fn) the class of the image curve s(X).

(iv) Again for n ≥ 0, show that A0(Fn) ∼= Z and A1(Fn) = Z · [C]⊕Z · [D]. Compute
the intersection products C2, D2, and C ·D, arriving at a Bézout style theorem for
the surfaces Fn.

Exercise 10.6.2. Let F and F ′ be two rank-2 vector bundles on a scheme X . Compute the
Chern classes of F⊗F ′ in terms of the Chern classes of F and F ′.

Exercise 10.6.3. Let F be a vector bundle of rank r on a scheme X , and let p : P(F)→ X
be the projection. Prove that

Dr
F +Dr−1

F · p∗c1(F)+ · · ·+ p∗cr(F) = 0,

where DF is the Cartier divisor associated to the line bundle OP(F)(1).

Exercise 10.6.4. Let X ⊂ P4 be the intersection of two general quadric hypersurfaces.

(i) Show that one expects a finite number of lines in X .
(ii) If there is a finite number of lines in X , show that this number is 16 (as usual

counted with multiplicities (which one expects to be 1 for general X)).

Exercise 10.6.5. A circle in the plane P2
C is defined to be a conic passing through the two

points (1 :±i : 0).
Why is this called a circle?
How many circles are there in the plane that are tangent to
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(i) three circles
(ii) two circles and a line

(iii) one circle and two lines
(iv) three lines

in general position? (Watch out for possible non-enumerative contributions in the intersec-
tion products you consider.)

If you are interested, try to find out the answer to the above questions over R (and the
“usual” definition of a circle).

Exercise 10.6.6. Let X ⊂ P4 be a smooth quintic hypersurface, i. e. the zero locus of a
homogeneous polynomial of degree 5.

(i) Show that one expects a finite number of lines in X , and that this expected number
is then 2875.

(ii) Show that the number of lines on the special quintic X = {x5
0 + · · ·+ x5

4 = 0} is
not finite. This illustrates the fact that the intersection-theoretic computations will
only yield virtual numbers in general. (In fact one can show that the number of
lines on a general quintic hypersurface in P4 is finite and that the computation of
(i) then yields the correct answer.)

Exercise 10.6.7. Let X = P1×P1. Compute the number K2
X + c2(TX ) directly and check

that it is divisible by 12 (see example 10.4.8).

Exercise 10.6.8. Let X and Y be isomorphic smooth projective varieties. Use the Hirze-
bruch-Riemann-Roch theorem 10.4.5 to prove that the constant coefficients of the Hilbert
polynomials of X and Y agree, whereas the non-constant coefficients will in general be
different.


