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1. AFFINE VARIETIES

A subset of affine n-space An over a field k is called an algebraic set if it can be
written as the zero locus of a set of polynomials. By the Hilbert basis theorem, this
set of polynomials can be assumed to be finite. We define the Zariski topology on An

(and hence on any subset of An) by declaring the algebraic sets to be the closed sets.
Any algebraic set X ⊂An has an associated radical ideal I(X)⊂ k[x1, . . . ,xn] that

consists of those functions that vanish on X . Conversely, for any radical ideal I there
is an associated algebraic set Z(I) which is the common zero locus of all functions
in I. If k is algebraically closed, Hilbert’s Nullstellensatz states that this gives in
fact a one-to-one correspondence between algebraic sets in An and radical ideals in
k[x1, . . . ,xn].

An algebraic set (or more generally any topological space) is called irreducible
if it cannot be written as a union of two proper closed subsets. Irreducible algebraic
sets in An are called affine varieties. Any algebraic set in An can be decomposed
uniquely into a finite union of affine varieties. Under the correspondence mentioned
above, affine varieties correspond to prime ideals. The dimension of an algebraic set
(or more generally of a topological space) is defined to be the length of the longest
chain of irreducible closed subsets minus one.

1.1. Algebraic sets and the Zariski topology. We have said in the introduction that we
want to consider solutions of polynomial equations in several variables. So let us now
make the obvious definitions.

Definition 1.1.1. Let k be a field (recall that you may think of the complex numbers if you
wish). We define affine nnn-space over k, denotedAn, to be the set of all n-tuples of elements
of k:

An := {(a1, . . . ,an) ; ai ∈ k for 1≤ i≤ n}.
The elements of the polynomial ring

k[x1, . . . ,xn] :={polynomials in the variables x1, . . . ,xn over k}
={∑

I
aIxI ; aI ∈ k}

(with the sum taken over all multi-indices I = (i1, . . . , in) with i j ≥ 0 for all 1 ≤ j ≤ n)
define functions on An in the obvious way. For a given set S⊂ k[x1, . . . ,xn] of polynomials,
we call

Z(S)Z(S)Z(S) := {P ∈ An ; f (P) = 0 for all f ∈ S} ⊂ An

the zero set of S. Subsets of An that are of this form for some S are called algebraic sets.
By abuse of notation, we also write Z( f1, . . . , fi) for Z(S) if S = { f1, . . . , fi}.

Example 1.1.2. Here are some simple examples of algebraic sets:

(i) Affine n-space itself is an algebraic set: An = Z(0).
(ii) The empty set is an algebraic set: /0 = Z(1).

(iii) Any single point in An is an algebraic set: (a1, . . . ,an) = Z(x1−a1, . . . ,xn−an).
(iv) Linear subspaces of An are algebraic sets.
(v) All the examples from section 0 are algebraic sets: e. g. the curves of examples

0.1.1 and 0.1.3, and the cubic surface of example 0.1.7.

Remark 1.1.3. Of course, different subsets of k[x1, . . . ,xn] can give rise to the same alge-
braic set. Two trivial cases are:

(i) If two polynomials f and g are already in S, then we can also throw in f + g
without changing Z(S).

(ii) If f is in S, and g is any polynomial, then we can also throw in f · g without
changing Z(S).
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Recall that a subset S of a commutative ring R (in our case, R = k[x1, . . . ,xn]) is called
an ideal if it is closed both under addition and under multiplication with arbitrary ring
elements. If S⊂ R is any subset, the set

(S) = { f1g1 + · · ·+ fmgm ; fi ∈ S, gi ∈ R}
is called the ideal generated by S; it is obviously an ideal. So what we have just said
amounts to stating that Z(S) = Z((S)). It is therefore sufficient to only look at the cases
where S is an ideal of k[x1, . . . ,xn].

There is a more serious issue though that we will deal with in section 1.2: a function f
has the same zero set as any of its powers f i; so e. g. Z(x1) = Z(x2

1) (although the ideals
(x1) and (x2

1) are different).

We will now address the question whether any algebraic set can be defined by a finite
number of polynomials. Although this is entirely a question of commutative algebra about
the polynomial ring R = k[x1, . . . ,xn], we will recall here the corresponding definition and
proposition.

Lemma and Definition 1.1.4. Let R be a ring. The following two conditions are equiva-
lent:

(i) Every ideal in R can be generated by finitely many elements.
(ii) R satisfies the ascending chain condition: every (infinite) ascending chain of

ideals I1 ⊂ I2 ⊂ I3 ⊂ ·· · is stationary, i. e. we must have Im = Im+1 = Im+2 = · · ·
for some m.

If R satisfies these conditions, it is called Noetherian.

Proof. (i) ⇒ (ii): Let I1 ⊂ I2 ⊂ ·· · be an infinite ascending chain of ideals in R. Then
I := ∪iIi is an ideal of R as well; so by assumption (i) it can be generated by finitely many
elements. These elements must already be contained in one of the Im, which means that
Im = Im+1 = · · · .

(ii) ⇒ (i): Assume that there is an ideal I that cannot be generated by finitely many
elements. Then we can recursively construct elements fi in I by picking f1 ∈ I arbitrary
and fi+1 ∈ I\( f1, . . . , fi). It follows that the sequence of ideals

( f1)⊂ ( f1, f2)⊂ ( f1, f2, f3)⊂ ·· ·
is not stationary. �

Proposition 1.1.5. (Hilbert basis theorem) If R is a Noetherian ring then so is R[x]. In
particular, k[x1, . . . ,xn] is Noetherian; so every algebraic set can be defined by finitely
many polynomials.

Proof. Assume that I ⊂ R[x] is an ideal that is not finitely generated. Then we can define
a sequence of elements fi ∈ I as follows: let f0 be a non-zero element of I of minimal
degree, and let fi+1 be an element of I of minimal degree in I\( f0, . . . , fi). Obviously,
deg fi ≤ deg fi+1 for all i by construction.

For all i let ai ∈ R be the leading coefficient of fi, and let Ii = (a0, . . . ,ai)⊂ R. As R is
Noetherian, the chain of ideals I0 ⊂ I1 ⊂ ·· · in R is stationary. Hence there is an m such
that am+1 ∈ (a0, . . . ,am). Let r0, . . . ,rm ∈ R such that am+1 = ∑

m
i=0 riai, and consider the

polynomial

f = fm+1−
m

∑
i=0

xdeg fm+1−deg firi fi.

We must have f ∈ I\( f0, . . . , fm), as otherwise the above equation would imply that fm+1 ∈
( f0, . . . , fm). But by construction the coefficient of f of degree deg fm+1 is zero, so deg f <
deg fm+1, contradicting the choice of fm+1. Hence R[x] is Noetherian.
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In particular, as k is trivially Noetherian, it follows by induction that k[x1, . . . ,xn] is. �

We will now return to the study of algebraic sets and make them into topological spaces.

Lemma 1.1.6.

(i) If S1 ⊂ S2 ⊂ k[x1, . . . ,xn] then Z(S2)⊂ Z(S1)⊂ An.
(ii) If {Si} is a family of subsets of k[x1, . . . ,xn] then

⋂
i Z(Si) = Z(

⋃
i Si)⊂ An.

(iii) If S1,S2 ⊂ k[x1, . . . ,xn] then Z(S1)∪Z(S2) = Z(S1S2)⊂ An.

In particular, arbitrary intersections and finite unions of algebraic sets are again algebraic
sets.

Proof. (i) and (ii) are obvious, so let us prove (iii). “⊂”: If P ∈ Z(S1)∪Z(S2) then P ∈
Z(S1) or P∈ Z(S2). In particular, for any f1 ∈ S1, f2 ∈ S2, we have f1(P) = 0 or f2(P) = 0,
so f1 f2(P) = 0. “⊃”: If P /∈ Z(S1)∪ Z(S2) then P /∈ Z(S1) and P /∈ Z(S2). So there
are functions f1 ∈ S1 and f2 ∈ S2 that do not vanish at P. Hence f1 f2(P) 6= 0, so P /∈
Z(S1S2). �

Remark 1.1.7. Recall that a topology on any set X can be defined by specifying which
subsets of X are to be considered closed sets, provided that the following conditions hold:

(i) The empty set /0 and the whole space X are closed.
(ii) Arbitrary intersections of closed sets are closed.

(iii) Finite unions of closed sets are closed.

Note that the standard definition of closed subsets of Rn that you know from real analysis
satisfies these conditions.

A subset Y of X is then called open if its complement X\Y is closed. If X is a topological
space and Y ⊂ X any subset, Y inherits an induced subspace topology by declaring the
sets of the form Y ∩Z to be closed whenever Z is closed in X . A map f : X → Y is called
continuous if inverse images of closed subsets are closed. (For the standard topology of Rn

from real analysis and the standard definition of continuous functions, it is a theorem that
a function is continuous if and only if inverse images of closed subsets are closed.)

Definition 1.1.8. We define the Zariski topology on An to be the topology whose closed
sets are the algebraic sets (lemma 1.1.6 tells us that this gives in fact a topology). Moreover,
any subset X of An will be equipped with the topology induced by the Zariski topology on
An. This will be called the Zariski topology on X .

Remark 1.1.9. In particular, using the induced subspace topology, this defines the Zariski
topology on any algebraic set X ⊂ An: the closed subsets of X are just the algebraic sets
Y ⊂ An contained in X .

The Zariski topology is the standard topology in algebraic geometry. So whenever
we use topological concepts in what follows we refer to this topology (unless we specify
otherwise).

Remark 1.1.10. The Zariski topology is quite different from the usual ones. For example,
on An, a closed subset that is not equal to An satisfies at least one non-trivial polynomial
equation and has therefore necessarily dimension less than n. So the closed subsets in
the Zariski topology are in a sense “very small”. It follows from this that any two non-
empty open subsets of An have a non-empty intersection, which is also unfamiliar from the
standard topology of real analysis.

Example 1.1.11. Here is another example that shows that the Zariski topology is “un-
usual”. The closed subsets of A1 besides the whole space and the empty set are exactly the
finite sets. In particular, if f :A1→A1 is any bijection, then f is a homeomorphism. (This
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last statement is essentially useless however, as we will not define morphisms between
algebraic sets as just being continuous maps with respect to the Zariski topology. In fact,
this example gives us a strong hint that we should not do so.)

1.2. Hilbert’s Nullstellensatz. We now want to establish the precise connection between
algebraic sets in An and ideals in k[x1, . . . ,xn], hence between geometry and algebra. We
have already introduced the operation Z(·) that takes an ideal (or any subset of k[x1, . . . ,xn])
to an algebraic set. Here is an operation that does the opposite job.

Definition 1.2.1. For a subset X ⊂ An, we call

I(X)I(X)I(X) := { f ∈ k[x1, . . . ,xn] ; f (P) = 0 for all P ∈ X} ⊂ k[x1, . . . ,xn]

the ideal of X (note that this is in fact an ideal).

Remark 1.2.2. We have thus defined a two-way correspondence{
algebraic sets

in An

} I−→
Z←−

{
ideals in

k[x1, . . . ,xn]

}
.

We will now study to what extent these two maps are inverses of each other.

Remark 1.2.3. Let us start with the easiest case of algebraic sets and look at points in An.
Points are minimal algebraic sets, so by lemma 1.1.6 (i) they should correspond to maximal
ideals. In fact, the point (a1, . . . ,an)∈An is the zero locus of the ideal I = (x1−a1, . . . ,xn−
an). Recall from commutative algebra that an ideal I of a ring R is maximal if and only
if R/I is a field. So in our case I is indeed maximal, as k[x1, . . . ,xn]/I ∼= k. However,
for general k there are also maximal ideals that are not of this form, e. g. (x2 + 1) ⊂ R[x]
(where R[x]/(x2 +1) ∼= C). The following proposition shows that this cannot happen if k
is algebraically closed, i. e. if every non-constant polynomial in k[x] has a zero.

Proposition 1.2.4. (Hilbert’s Nullstellensatz (“theorem of the zeros”)) Assume that k is
algebraically closed (e. g. k = C). Then the maximal ideals of k[x1, . . . ,xn] are exactly the
ideals of the form (x1−a1, . . . ,xn−an) for some ai ∈ k.

Proof. Again this is entirely a statement of commutative algebra, so you can just take it on
faith if you wish (in fact, many textbooks on algebraic geometry do so). For the sake of
completeness we will give a short proof here in the case k = C that uses only some basic
algebra; but feel free to ignore it if it uses concepts that you do not know. A proof of the
general case can be found e. g. in [Ha] proposition 5.18.

So assume that k = C. From the discussion above we see that it only remains to show
that any maximal ideal m is contained in an ideal of the form (x1−a1, . . . ,xn−an).

As C[x1, . . . ,xn] is Noetherian, we can write m= ( f1, . . . , fr) for some fi ∈C[x1, . . . ,xn].
Let K be the subfield of C obtained by adjoining to Q all coefficients of the fi. We will
now restrict coefficients to this subfield K, so let m0 = m∩K[x1, . . . ,xn]. Note that then
m=m0 ·C[x1, . . . ,xn], as the generators fi of m lie in m0.

Note that m0 ⊂ K[x1, . . . ,xn] is a maximal ideal too, because if we had an inclusion
m0 ( m′0 ( K[x1, . . . ,xn] of ideals, this would give us an inclusion m ( m′ ( C[x1, . . . ,xn]
by taking the product with C[x1, . . . ,xn]. (This last inclusion has to be strict as intersecting
it with K[x1, . . . ,xn] gives the old ideals m0 (m′0 back again.)

So K[x1, . . . ,xn]/m0 is a field. We claim that there is an embedding K[x1, . . . ,xn]/m0 ↪→
C. To see this, split the field extension K[x1, . . . ,xn]/m0 : Q into a purely transcendental
part L : Q and an algebraic part K[x1, . . . ,xn]/m0 : L. As K[x1, . . . ,xn]/m0 and hence L is
finitely generated over Q whereas C is of infinite transcendence degree over Q, there is an
embedding L⊂ C. Finally, as K[x1, . . . ,xn]/m0 : L is algebraic and C algebraically closed,
this embedding can be extended to give an embedding K[x1, . . . ,xn]/m0 ⊂ C.
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Let ai be the images of the xi under this embedding. Then fi(a1, . . . ,an) = 0 for all i by
construction, so fi ∈ (x1−a1, . . . ,xn−an) and hence m⊂ (x1−a1, . . . ,xn−an). �

Remark 1.2.5. The same method of proof can be used for any algebraically closed field k
that has infinite transcendence degree over the prime field Q or Fp.

Corollary 1.2.6. Assume that k is algebraically closed.

(i) There is a 1:1 correspondence

{points in An}←→ {maximal ideals of k[x1, . . . ,xn]}

given by (a1, . . . ,an)←→ (x1−a1, . . . ,xn−an).
(ii) Every ideal I ( k[x1, . . . ,xn] has a zero in An.

Proof. (i) is obvious from the Nullstellensatz, and (ii) follows in conjunction with lemma
1.1.6 (i) as every ideal is contained in a maximal one. �

Example 1.2.7. We just found a correspondence between points of An and certain ideals
of the polynomial ring. Now let us try to extend this correspondence to more complicated
algebraic sets than just points. We start with the case of a collection of points in A1.

(i) Let X = {a1, . . . ,ar} ⊂ A1 be a finite algebraic set. Obviously, I(X) is then gen-
erated by the function (x− a1) · · ·(x− ar), and Z(I(X)) = X again. So Z is an
inverse of I.

(ii) Conversely, let I ⊂ k[x] be an ideal (not equal to (0) or (1)). As k[x] is a principal
ideal domain, we have I = ( f ) for some non-constant monic function f ∈ k[x].
Now for the correspondence to work at all, we have to require that k be alge-
braically closed: for if f had no zeros, we would have Z(I) = /0, and I(Z(I)) = (1)
would give us back no information about I at all. But if k is algebraically closed,
we can write f = (x− a1)

m1 · · ·(x− ar)
mr with the ai distinct and mi > 0. Then

Z(I) = {a1, . . . ,ar} and therefore I(Z(I)) is generated by (x−a1) · · ·(x−ar), i. e.
all exponents are reduced to 1. Another way to express this fact is that a function
is in I(Z(I)) if and only if some power of it lies in I. We write this as I(Z(I))=

√
I,

where we use the following definition.

Definition 1.2.8. For an ideal I ⊂ k[x1, . . . ,xn], we define the radical of I to be
√

I
√

I
√

I := { f ∈ k[x1, . . . ,xn] ; f r ∈ I for some r > 0}.

(In fact, this is easily seen to be an ideal.) An ideal I is called radical if I =
√

I. Note that
the ideal of an algebraic set is always radical.

The following proposition says that essentially the same happens for n > 1. As it can
be guessed from the example above, the case Z(I(X)) is more or less trivial, whereas the
case I(Z(I)) is more difficult and needs the assumption that k be algebraically closed.

Proposition 1.2.9.

(i) If X1 ⊂ X2 are subsets of An then I(X2)⊂ I(X1).
(ii) For any algebraic set X ⊂ An we have Z(I(X)) = X.

(iii) If k is algebraically closed, then for any ideal I ⊂ k[x1, . . . ,xn] we have I(Z(I)) =√
I.

Proof. (i) is obvious, as well as the “⊃” parts of (ii) and (iii).
(ii) “⊂”: By definition X = Z(I) for some I. Hence, by (iii) “⊃” we have I ⊂ I(Z(I)) =

I(X). By 1.1.6 (i) it then follows that Z(I(X))⊂ Z(I) = X .
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(iii) “⊂”: (This is sometimes also called Hilbert’s Nullstellensatz, as it follows easily
from proposition 1.2.4.) Let f ∈ I(Z(I)). Consider the ideal

J = I +( f t−1)⊂ k[x1, . . . ,xn, t].

This has empty zero locus in An+1, as f vanishes on Z(I), so if we require f t = 1 at the
same time, we get no solutions. Hence J = (1) by corollary 1.2.6 (i). In particular, there is
a relation

1 = ( f t−1)g0 +∑ figi ∈ k[x1, . . . ,xn, t]

for some gi ∈ k[x1, . . . ,xn, t] and fi ∈ I. If tN is the highest power of t occurring in the gi,
then after multiplying with f N we can write this as

f N = ( f t−1)G0(x1, . . . ,xn, f t)+∑ fiGi(x1, . . . ,xn, f t)

where Gi = f Ngi is considered to be a polynomial in x1, . . . ,xn, f t. Modulo f t−1 we get

f N = ∑ fiGi(x1, . . . ,xn,1) ∈ k[x1, . . . ,xn, t]/( f t−1).

But as the map k[x1, . . . ,xn]→ k[x1, . . . ,xn, f t]/( f t− 1) is injective, this equality holds in
fact in k[x1, . . . ,xn], so f N ∈ I. �

Corollary 1.2.10. If k is algebraically closed, there is a one-to-one inclusion-reversing
correspondence between algebraic sets in An and radical ideals in k[x1, . . . ,xn], given by
the operations Z(·) and I(·). (This is also sometimes called the Nullstellensatz.)

Proof. Immediately from proposition 1.2.9 and lemma 1.1.6 (i). �

From now on up to the end of section 4, we will always assume that the ground field k
is algebraically closed.

Remark 1.2.11. Even though the radical
√

I of an ideal I was easy to define, it is quite
difficult to actually compute

√
I for any given ideal I. Even worse, it is already quite

difficult just to check whether I itself is radical or not. In general, you will need non-trivial
methods of computer algebra to solve problems like this.

1.3. Irreducibility and dimension. The algebraic set X = {x1x2 = 0}⊂A2 can be written
as the union of the two coordinate axes X1 = {x1 = 0} and X2 = {x2 = 0}, which are
themselves algebraic sets. However, X1 and X2 cannot be decomposed further into finite
unions of smaller algebraic sets. We now want to generalize this idea. It turns out that this
can be done completely in the language of topological spaces. This has the advantage that
it applies to more general cases, i. e. open subsets of algebraic sets.

However, you will want to think only of the Zariski topology here, since the concept of
irreducibility as introduced below does not make much sense in classical topologies.

Definition 1.3.1.
(i) A topological space X is said to be reducible if it can be written as a union

X = X1 ∪X2, where X1 and X2 are (non-empty) closed subsets of X not equal to
X . It is called irreducible otherwise. An irreducible algebraic set in An is called
an affine variety.

(ii) A topological space X is called disconnected if it can be written as a disjoint
union X = X1∪X2 of (non-empty) closed subsets of X not equal to X . It is called
connected otherwise.

Remark 1.3.2. Although we have given this definition for arbitrary topological spaces,
you will usually want to apply the notion of irreducibility only in the Zariski topology.
For example, in the usual complex topology, the affine line A1 (i. e. the complex plane) is
reducible because it can be written e. g. as the union of closed subsets

A1 = {z ∈ C ; |z| ≤ 1}∪{z ∈ C ; |z| ≥ 1}.
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In the Zariski topology however, A1 is irreducible (as it should be).
In contrast, the notion of connectedness can be used in the “usual” topology too and

does mean there what you think it should mean.

Remark 1.3.3. Note that there is a slight inconsistency in the existing literature: some
authors call a variety what we call an algebraic set, and consequently an irreducible variety
what we call an affine variety.

The algebraic characterization of affine varieties is the following.

Lemma 1.3.4. An algebraic set X ⊂ An is an affine variety if and only if its ideal I(X)⊂
k[x1, . . . ,xn] is a prime ideal.

Proof. “⇐”: Let I(X) be a prime ideal, and suppose that X = X1 ∪ X2. Then I(X) =
I(X1)∩ I(X2) by exercise 1.4.1 (i). As I(X) is prime, we may assume I(X) = I(X1), so
X = X1 by proposition 1.2.9 (ii).

“⇒”: Let X be irreducible, and let f g ∈ I(X). Then X ⊂ Z( f g) = Z( f )∪Z(g), hence
X = (Z( f )∩X)∪ (Z(g)∩X) is a union of two algebraic sets. As X is irreducible, we may
assume that X = Z( f )∩X , so f ∈ I(X). �

Example 1.3.5.
(i) An is an affine variety, as I(An)= (0) is prime. If f ∈ k[x1, . . . ,xn] is an irreducible

polynomial, then Z( f ) is an affine variety. A collection of m points in An is
irreducible if and only if m = 1.

(ii) Every affine variety is connected. The union of the n coordinate axes in An is
always connected, although it is reducible for n > 1. A collection of m points in
An is connected if and only if m = 1.

As it can be expected, any topological space that satisfies a reasonable finiteness con-
dition can be decomposed uniquely into finitely many irreducible spaces. This is what we
want to show next.

Definition 1.3.6. A topological space X is called Noetherian if every descending chain
X ⊃ X1 ⊃ X2 ⊃ ·· · of closed subsets of X is stationary.

Remark 1.3.7. By corollary 1.2.10 the fact that k[x1, . . . ,xn] is a Noetherian ring (see propo-
sition 1.1.5) translates into the statement that any algebraic set is a Noetherian topological
space.

Proposition 1.3.8. Every Noetherian topological space X can be written as a finite union
X = X1 ∪ ·· · ∪Xr of irreducible closed subsets. If one assumes that Xi 6⊂ X j for all i 6= j,
then the Xi are unique (up to permutation). They are called the irreducible components of
X.

In particular, any algebraic set is a finite union of affine varieties in a unique way.

Proof. To prove existence, assume that there is a topological space X for which the state-
ment is false. In particular, X is reducible, hence X = X1∪X ′1. Moreover, the statement of
the proposition must be false for at least one of these two subsets, say X1. Continuing this
construction, one arrives at an infinite chain X ) X1 ) X2 ) · · · of closed subsets, which is
a contradiction as X is Noetherian.

To show uniqueness, assume that we have two decompositions X = X1 ∪ ·· · ∪ Xr =
X ′1 ∪ ·· · ∪X ′s . Then X1 ⊂

⋃
i X ′i , so X1 =

⋃
(X1 ∩X ′i ). But X1 is irreducible, so we can

assume X1 = X1 ∩X ′1, i. e. X1 ⊂ X ′1. For the same reason, we must have X ′1 ⊂ Xi for some
i. So X1 ⊂ X ′1 ⊂ Xi, which means by assumption that i = 1. Hence X1 = X ′1 is contained
in both decompositions. Now let Y = X\X1. Then Y = X2 ∪ ·· · ∪Xr = X ′2 ∪ ·· · ∪X ′s ; so
proceeding by induction on r we obtain the uniqueness of the decomposition. �
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Remark 1.3.9. It is probably time again for a warning: given an ideal I of the polynomial
ring, it is in general not easy to find the irreducible components of Z(I), or even to deter-
mine whether Z(I) is irreducible or not. There are algorithms to figure this out, but they are
computationally quite involved, so you will in most cases want to use a computer program
for the actual calculation.

Remark 1.3.10. In the same way one can show that every algebraic set X is a (disjoint)
finite union of connected algebraic sets, called the connected components of X .

Remark 1.3.11. We have now seen a few examples of the correspondence between geome-
try and algebra that forms the base of algebraic geometry: points in affine space correspond
to maximal ideals in a polynomial ring, affine varieties to prime ideals, algebraic sets to
radical ideals. Most concepts in algebraic geometry can be formulated and most proofs
can be given both in geometric and in algebraic language. For example, the geometric
statement that we have just shown that any algebraic set can be written as a finite union
of irreducible components has the equivalent algebraic formulation that every radical ideal
can be written uniquely as a finite intersection of prime ideals.

Remark 1.3.12. An application of the notion of irreducibility is the definition of the di-
mension of an affine variety (or more generally of a topological space; but as in the case
of irreducibility above you will only want to apply it to the Zariski topology). Of course,
in the case of complex varieties we have a geometric idea what the dimension of an affine
variety should be: it is the number of complex coordinates that you need to describe X lo-
cally around any point. Although there are algebraic definitions of dimension that mimics
this intuitive one, we will give a different definition here that uses only the language of
topological spaces. Finally, all these definitions are of course equivalent and describe the
intuitive notion of dimension (at least over C), but it is actually quite hard to prove this
rigorously.

The idea to define the dimension in algebraic geometry using the Zariski topology is the
following: if X is an irreducible topological space, then any closed subset of X not equal
to X must have dimension (at least) one smaller. (This is of course an idea that is not valid
in the usual topology that you know from real analysis.)

Definition 1.3.13. Let X be a (non-empty) irreducible topological space. The dimension
of X is the biggest integer n such that there is a chain /0 6= X0 ( X1 ( · · · ( Xn = X of
irreducible closed subsets of X . If X is any Noetherian topological space, the dimension of
X is defined to be the supremum of the dimensions of its irreducible components. A space
of dimension 1 is called a curve, a space of dimension 2 a surface.

Remark 1.3.14. In this definition you should think of Xi as having dimension i. The content
of the definition is just that there is “nothing between” varieties of dimension i and i+1.

Example 1.3.15. The dimension of A1 is 1, as single points are the only irreducible closed
subsets of A1 not equal to A1. We will see in exercise 1.4.9 that the dimension of A2 is
2. Of course, the dimension of An is always n, but this is a fact from commutative algebra
that we cannot prove at the moment. But we can at least see that the dimension of An is
not less than n, because there are sequences of inclusions

A0 (A1 ( · · ·(An

of linear subspaces of increasing dimension.

Remark 1.3.16. This definition of dimension has the advantage of being short and intuitive,
but it has the disadvantage that it is very difficult to apply in actual computations. So for
the moment we will continue to use the concept of dimension only in the informal way as
we have used it so far. We will study the dimension of varieties rigorously in section 4,
after we have developed more powerful techniques in algebraic geometry.
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Remark 1.3.17. Here is another application of the notion of irreducibility (that is in fact
not much more than a reformulation of the definition). Let X be an irreducible topological
space (e. g. an affine variety). Let U ⊂ X be a non-empty open subset, and let Y ( X be
a closed subset. The fact that X cannot be the union (X\U)∪Y can be reformulated by
saying that U cannot be a subset of Y . In other words, the closureclosureclosure of U (i. e. the smallest
closed subset of X that contains U) is equal to X itself. Recall that an open subset of a
topological space X is called dense if its closure is equal to the whole space X . With this
wording, we have just shown that in an irreducible topological space every non-empty open
subset is dense. Note that this is not true for reducible spaces: let X = {x1x2 = 0} ⊂ A2

be the union of the two coordinate axes, and let U = {x1 6= 0}∩X be the open subset of X
consisting of the x1-axis minus the origin. Then the closure of U in X is just the x1-axis,
and not all of X .

1.4. Exercises. In all exercises, the ground field k is assumed to be algebraically closed
unless stated otherwise.

Exercise 1.4.1. Let X1,X2 ⊂ An be algebraic sets. Show that

(i) I(X1∪X2) = I(X1)∩ I(X2),
(ii) I(X1∩X2) =

√
I(X1)+ I(X2).

Show by example that taking the radical in (ii) is in general necessary, i. e. find algebraic
sets X1,X2 such that I(X1∩X2) 6= I(X1)+ I(X2). Can you see geometrically what it means
if we have inequality here?

Exercise 1.4.2. Let X ⊂ A3 be the union of the three coordinate axes. Determine gener-
ators for the ideal I(X). Show that I(X) cannot be generated by fewer than 3 elements,
although X has codimension 2 in A3.

Exercise 1.4.3. In affine 4-dimensional space A4 with coordinates x,y,z, t let X be the
union of the two planes

X ′ = {x = y = 0} and X ′′ = {z = x− t = 0}.

Compute the ideal I = I(X)⊂ k[x,y,z, t]. For any a∈ k let Ia⊂ k[x,y,z] be the ideal obtained
by substituting t = a in I, and let Xa = Z(Ia)⊂ A3.

Show that the family of algebraic sets Xa with a ∈ k describes two skew lines in A3

approaching each other, until they finally intersect transversely for a = 0.
Moreover, show that the ideals Ia are radical for a 6= 0, but that I0 is not. Find the

elements in
√

I0\I0 and interpret them geometrically.

Exercise 1.4.4. Let X ⊂A3 be the algebraic set given by the equations x2
1−x2x3 = x1x3−

x1 = 0. Find the irreducible components of X . What are their prime ideals? (Don’t let the
simplicity of this exercise fool you. As mentioned in remark 1.3.9, it is in general very
difficult to compute the irreducible components of the zero locus of given equations, or
even to determine if it is irreducible or not.)

Exercise 1.4.5. Let A3 be the 3-dimensional affine space over a field k with coordinates
x,y,z. Find ideals describing the following algebraic sets and determine the minimal num-
ber of generators for these ideals.

(i) The union of the (x,y)-plane with the z-axis.
(ii) The union of the 3 coordinate axes.

(iii) The image of the map A1→ A3 given by t 7→ (t3, t4, t5).

Exercise 1.4.6. Let Y be a subspace of a topological space X . Show that Y is irreducible
if and only if the closure of Y in X is irreducible.
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Exercise 1.4.7. (For those of you who like pathological examples. You will need some
knowledge on general topological spaces.) Find a Noetherian topological space with infi-
nite dimension. Can you find an affine variety with infinite dimension?

Exercise 1.4.8. Let X = {(t, t3, t5) ; t ∈ k} ⊂ A3. Show that X is an affine variety of
dimension 1 and compute I(X).

Exercise 1.4.9. Let X ⊂ A2 be an irreducible algebraic set. Show that either

• X = Z(0), i. e. X is the whole space A2, or
• X = Z( f ) for some irreducible polynomial f ∈ k[x,y], or
• X = Z(x−a,y−b) for some a,b ∈ k, i. e. X is a single point.

Deduce that dim(A2) = 2. (Hint: Show that the common zero locus of two polynomials
f ,g ∈ k[x,y] without common factor is finite.)


